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i 

ABSTRACT 

High energy density materials (HEDM) have gained extensive attention due to their energetic 

properties and safety issues. Nitro and fluoro groups, among others, have become viable 

substituents in the HEDM triazole framework because of their particular contribution to 

detonation properties and moderate sensitivity. In this study, fluorinated bis(trinitromethyl) 

azo triazoles were designed theoretically using the Density Function Theory (DFT) approach 

with hybrid functional B3LYP. The molecular structures, thermodynamic properties of 

gaseous species (e.g., enthalpies of detonation and enthalpies of formation) and energetic 

properties of solid materials (detonation heat Q, pressure PD and velocity VD) have been 

investigated. The best characteristics attained for the designed azo fluorinated solid 

compounds are as follows: Q 1650 – 1690 cal g–1, PD 44 – 46 GPa and VD 9.8 km s–1. These 

characteristics are superior to those of conventional explosives, indicating that fluorinated 

bis(trinitromethyl) azo triazoles are promising HEDM. 

Keywords: High energy density materials, Fluorinated bis(trinitromethyl) azo triazoles, DFT, 

Thermodynamic and Energetic properties. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Problem 

Energetic materials belong to a class of materials which contain high amount of deposited 

chemical energy that can be released (Brinck, 2014). This energy is released by rapid 

propagation reaction known as detonation reaction (Millar, 2011; Tarver, 2020). In 

comparison with deflagration and combustion reactions, detonation reaction is speedier and 

supersonic shock waves (Diegelmann et al., 2016). It is also an exothermic reaction which 

leads to an increase in pressure and temperature of the system (Collins & Gottfried, 2017). 

Materials of this class include common fuels such as gasoline and diesel (Olah & Squire, 

2012) which are used to power automobiles, and explosives such as dynamite, gun-powder 

and trinitrotoluene (Luan et al., 2010). 

World high energy materials demand is now increasing and has reached an exceedingly high 

level (Talawar et al., 2009). The economy, political state and population growth of different 

nations are closely linked to availability of energetic materials products (Talawar et al., 

2009). The science of high energy density materials is now active because of widespread 

applications of these materials in defense, exploration and mining of minerals, forecasting 

earthquakes, construction industry, correcting weather phenomena, extinguishing fires, 

production of nanomaterials and metals processing (Dalinger et al., 2018). Several materials 

are currently exploited to meet the needs for industrial development through production of 

strong and reliable instruments for industries (Palysaeva et al., 2019). 

Almost all traditional energetic compounds such as pentaerythritol tetranitrate (PETN), 

trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), 2, 4, 6, 8, 10, 12-

hexanitrohexaazaisowurtzitane (CL-20) and 1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazoctane (HMX) 

are explosives and therefore environmental unfriendly and are considered to be dangerous 

(Thottempudi & Shreeve, 2011). Therefore, the scientific community is in the drive to design 

and prepare novel high energy materials such as energetic polymers, polynitro compounds, 

energetic salts and nitrogen rich compounds for technological development and energy 

production (Dharavath et al., 2017). 
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A fashionable approach to the field of energetic materials is to substitute some explosives 

with high energy groups containing materials. These compounds contain high proportion of 

high energy groups by mass relative to traditional explosives (Zhang et al., 2019). High 

nitrogen compounds such as azoles together with energetic substituent groups such as nitrato 

(-ONO2), nitroimine (=NNO2), nitramine (-NHNO2) and nitro (-NO2) functional groups are 

of particular interest due to their satisfactory oxygen content (Fischer et al., 2010; Holl et al., 

2003; Karaghiosoff et al., 2003; Semenov et al., 2017; Thottempudi & Shreeve, 2011). These 

compounds burn more cleanly producing less soot, less carbon monoxide and the major 

product of explosion is nitrogen gas (Türker, 2016). 

Elevated properties; enthalpy of formation, detonation pressure, density, thermal stability, 

detonation velocity and low sensitivity towards external forces such as friction, shock and 

impact are the necessary characteristics for energetic materials (Türker, 2016). These 

properties can be achieved by choosing the number, type and position of the substituent 

groups in the framework (Dalinger et al., 2018). Fluorinated compounds are subject of 

thorough research due to their exceptional detonation properties (Martinez et al., 2012). High 

fluorine content together with hydrogen results in the formation of hydrogen fluoride upon 

detonation which generates high amount of energy (Ye et al., 2007). The existence of fluoro 

groups also increases the density of the substance (Dalinger et al., 2018; Zhang et al., 2019). 

Fluorinated bis(trinitromethyl) azo triazoles show a promising solution due to ability of 

fluoro group to enhance energetic nature of the material. 

1.2 Statement of the Problem 

Majority of high energy materials are highly sensitive towards external impact which makes 

them environmentally unfriendly. However, some polynitro compounds which are not 

harmful have been prepared but they show less energetic properties as compared to 

traditional explosives and others are highly sensitive and concern complex synthesis methods 

(Zhang et al., 2019). So, there is a need to find new energetic materials which are less 

sensitive and at the same time simpler to synthesize. In order to attain high energetic nature, 

the group attached to a highly nitrated compound should be highly energetic such that upon 

detonation, high amount of energy is generated. Therefore, the present study aimed at design 

of new energetic materials via fluorinating bis(trinitromethyl) azo triazoles towards 

improving energetic performance. 
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1.3 Rationale of the Study 

Much work has been carried out in the area of high energy density materials by investigation 

of various azole compounds, but less done on the effect of fluoro substituents on highly 

nitrated compounds. The improvement of energetic properties has been growing at a slow 

pace; this is associated with low level of understanding of chemical process such as electron 

transfer within the material itself. The performance of energetic materials is assessed mostly 

by considering the amount of released energy, speed of detonation, detonation pressure and 

type of products formed. Therefore, the present study will help to screen potential compounds 

with desirable properties to be considered as potential energetic materials. 

1.4 Research Objectives 

1.4.1 General Objective 

To design new energetic materials with higher energy contents by introducing fluoro groups 

into bis(trinitromethyl) azo triazoles. 

1.4.2 Specific Objectives 

(i) To design fluoro bis(trinitromethyl) azo triazoles compounds and investigate their 

geometry, electronic structure and vibrational spectrum. 

(ii) To determine the thermodynamic functions, thermal stability and energetic 

properties of the compounds. 

1.5 Research Questions 

(i) What are the structural, electronic, vibrational, thermodynamic and energetic 

properties of fluorobis(trinitromethyl) azo triazoles? 

(ii) What are the effects of fluoro substituent groups on the energetic properties of 

bis(trinitromethyl) azo triazoles? 

1.6 Significance of the Study 

The knowledge of the geometrical structures, vibrational frequencies, thermodynamic and 

energetic properties will provide clear direction and understanding of the influence of fluoro 

and other energetic groups on the properties of bridged and non-bridged azole compounds. 
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Furthermore, this study will be used as a framework for further theoretical and experimental 

investigations of new high energy materials. 

1.7 Delineation of the Study 

The study was conducted theoretically on fluorinated bis(trinitromethyl) triazoles. The 

molecules were designed and studied using various software as summarized in Table 4. The 

geometry optimization, HOMO-LUMO orbitals and vibrational frequencies computations of 

all designed molecules were performed using density functional theory (DFT) with hybrid 

functional B3LYP and basis set 6-31G(d,p) while thermodynamic characteristics of reactions 

were obtained with extended 6-311++G(d,p) basis set. The optimized geometrical parameters 

and vibrational frequencies were used for calculation of thermodynamic functions of the 

species in the gas and solid phase and the energetic properties. The results were used to 

predict the performance and stability of the designed compounds. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Energetic Materials Properties 

Generally, energetic materials are characterized by four basic features (Smirnov et al., 2011; 

Zeman & Jungová, 2016): 

(i) They are chemical compounds or mixtures which are ignited by heat, impact, 

shock, friction or a combination of them. 

(ii) They decompose rapidly (detonate) upon ignition. 

(iii) Large amount of gases at high pressure is evolved as a result of rapid expansion of 

those gases with higher forces to overcome confining forces. It is also 

accompanied by rapid liberation of heat. 

(iv) The detonation process accompanied by liberation of energy basically produces 

four effects; fragmentation, displacement, vibration and air blasting. 

Detonation of the material charges results into a high velocity shock wave accompanied by 

release of gases (Shtertser et al., 2020; Walters et al., 2020). This wave cracks the rock 

creating a number of cracks in the rock. The expanding gases produced in the detonation fill 

up the cracks until its pressure is weak (Bendezu et al., 2017; Yuan et al., 2019). High energy 

density materials are characterized by the following parameters as described below. 

2.1.1 Density 

Density is an important parameter to consider when selecting an energetic material since a 

denser material is required for easy detonation (Agrawal & Mishra, 2017; Onyelowe et al., 

2018). It is also important to note that when working under a wet condition, a denser material 

is necessary. For commercial explosives, the loading density ranges from 0.6 to 1.7 g cm–3 

(Table 1) (Remennikov et al., 2017). Additionally, the density of a free running explosive is 

expressed depending on the size of a given borehole. It’s also worth noting that a denser 

materials gives higher detonation pressure and velocity with exception of few materials 

(Mertuszka et al., 2018; Mishra et al., 2019). 

 



6 

Table 1: Properties of ammonia dynamite (low and high density) 

Density level Weight strength (%) Density (g cm–3) Confined velocity (km s–1) 

Low density 65 1.2 2.47 

 65 1.1 2.38 

 65 1.0 2.29 

 65 1.0 2.19 

 65 0.9 2.10 

 65 0.9 1.98 

 65 0.8 1.92 

High density 60 1.7 3.81 

 50 1.6 3.51 

 40 1.5 3.2 

 30 1.4 2.74 

 20 1.3 2.44 

Remennikov et al. (2017) 

Weight strength is a measure of the energy available in a given weight of an explosive 

material compared to energy of equal weight of ammonium nitrate fuel oil (ANFO) 

(Remennikov et al., 2017). It is expressed in terms of percent using ANFO as a standard 

explosive. A weight strength can be absolute or relative. Absolute weight strength, WA is the 

ratio of energy available in a given mass of explosive material to an equal mass ANFO, 

expressed as:  

ANFO

exp

A
M

E
W           (1) 

where 
expE  is the computed energy of an explosive material and ANFOM  is the mass of 

ammonium nitrate fuel oil measured in kilograms.  

On the other hand a relative weight strength is the energy per unit mass of an explosive 

material in relation to that of ANFO. It is expressed using the following equation: 

%100
W

W
E

ANFO

A
R x         (2) 

where WANFO is the absolute weight strength of ammonium nitrate fuel oil. 

2.1.2 Detonation Velocity and Pressure 

The velocity of detonation is the measure of the rate at which detonation waves travel in 

column (confined) or in open space (unconfined) (Jackson, 2017; Poludnenko et al., 2019). 
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Energetic materials in most cases are used in confined spaces. Therefore, it is significant to 

measure the velocity of detonation in confined spaces (Poludnenko et al., 2019; Yunoshev et 

al., 2017). In general, commercial explosives have detonation velocity ranging from 1.52 to 

7.62 km s–1 (Yunoshev et al., 2017). However, the velocity of detonation varies 

proportionally with the density of the material (Table 1). High velocity material is required 

for breaking up a hard rock (Kotomin et al., 2017). For complete confinement, it is important 

to consider the diameter of the column since the bigger the diameter, the higher is the 

velocity.  

Pressure of detonation is the principle measure of the materials performance (Keshavarz & 

Pouretedal, 2004). It relates to the loading density and detonation velocity of the material. A 

denser rock requires a stronger material in which a high pressure explosive is necessary. 

Principally, detonation velocity depends on four parameters; heat content of the material, 

loading density, materials composition and oxygen balance (Keshavarz, 2005).  

2.1.3 Impact Sensitivity 

Some explosives can easily explode while others not; considering this property, two kinds of 

explosives are available (Fu et al., 2017). Those with higher sensitivity (primary explosive) 

and others with lower sensitivity (secondary explosives). In general, a typical weight of a 

sample is dropped in a sequence of tests from a certain height onto the plate and the 

responses are recorded as h50% (the value from which 50% of the sample resulted into a 

reaction) (Cawkwell & Manner, 2019; Kamlet & Short, 1980). The h50% results can give 

different values and therefore they are not reproducible (Kamlet & Adolph, 1979). In this 

regard, the value is a suspect and the clue about the easiest of the materials to be set off by 

spark, impact, shock, heat and friction (Bowden & Yoffe, 1985; Wilson et al., 1990). For 

2,4,6-trinitrotoluene, the impact sensitivity vary from 98 cm to 250 cm or above (Wilson et 

al., 1990). The high value of h50% means that higher dropping height is required for the 

material to explode and hence the safer the material (Kamlet & Adolph, 1979). 

Among others, the impact sensitivity depends on; molecular electronegativities (Mullay, 

1987a, 1987b), concentration of detonation gases (Adolph et al., 1981; Rice & Hare, 2002), 

atomic charges (Murray et al., 1990; Owens et al., 1985), molecular mass (Rice & Hare, 

2002), vibrational states (Fried & Ruggiero, 1994; McNesby & Coffey, 1997), detonation 

enthalpy (Rice et al., 2007), enthalpy of formation (Keshavarz et al., 2007; Rice et al., 2007) 
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and oxygen balance (indicator of self oxidation of the compound) (He & Shreeve, 2016). 

Additionally, the sensitivity is highly related to electrostatic potential of the compound which 

is associated with molecular structure and electronegativity values of the atoms present in a 

compound (Murray et al., 1995). This is caused by building up of localized positive charges 

over the region of covalent bonding in a molecule (Politzer et al., 1982; Sjoberg & Politzer, 

1990). For highly nitrated and fluorinated energetic compounds, the localized positive 

charges build up over C-F, N-F and C-NO2 bonds causing the increase in sensitivity of the 

molecule (Politzer et al., 1984). 

Theoretically, four methods have been developed for the determination of impact sensitivity 

of energetic materials. These are based on detonation enthalpy and electrostatic potential 

properties (Rice & Hare, 2002) collectively called Generalized Interact Property Function 

(GIPF). The four methods are represented by the following equations, respectively:  

h50% = 9.2 + 803exp(–0.0875 |V̅+ – | V̅–||)    (3) 

h50% = 29.3 + 0.001386exp(48.84υ)                (4) 

h50% = 27.8 + 0.1135exp(–2.6479Q + 18.40)    (5) 

h50% = 1.341exp(8.1389υ – 1.6234Q + 10.01)   (6) 

where Q is the detonation heat, V̅+ is the average value of positive electrostatic potential, V̅– 

is the average values of negative electrostatic potential and υ is the index of charge balance 

obtained using Multiwfn program package (Lu & Chen, 2012). All values of h50% are 

measured in centimeter. 

It has been reported that method 2 (equation 4) provides reliable data which is nearly related 

to the experimental values for traditional explosives as presented in Table 2. 

Table 2: Predicted and experimental values of h50% (cm) for traditional explosives 

Compound Method 1 Method 2 Method 3 Method 4 Experimental 

TNT 73 80 133 143 98 

RDX 49 31 39 22 28 

HMX 21 31 41 22 32 

Mei et al. (2019) 
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2.1.4 Detonation Heat 

Heat of detonation, is the total energy evolved during detonation reaction (Tarver, 1982a, 

1982b). During detonation, several chemical reactions are taking place step by step. These 

reactions are exothermic and liberate a certain amount of heat energy collectively called 

detonation heat, Q (Politzer & Murray, 2015). The amount of heat energy released depends 

on the speed of the reaction progress; the slower progress, the lower energy will be released 

and hence few noticeable effects will be observed (Keshavarz & Pouretedal, 2004). On the 

other hand, higher energy is liberated when the reaction proceeds rapidly with high speed. 

The chemical explosion reaction involves oxidation in a limited number of simple partial 

reactions of each atom within a molecule with oxygen in order of preference (Keshavarz, 

2008; Schultz & Shepherd, 2000). The preference is in the following order; metal, carbon, 

hydrogen, carbon monoxide, excess O, H and NO2. The heat of detonation is computed as the 

difference between the enthalpies of formation of the compounds before and after detonation 

(Kamlet & Hurwitz, 1968) as follows:  

Q = prod
o

freact
o

f ΣΔΣΔ HH        (7) 

The Q is usually expressed in cal g–1 when the result obtained from equation (7) is divided by 

the molecular weight of the compound (Kamlet & Jacobs, 1968). The value Q is used to 

determine the detonation pressure (PD) and velocity (VD) (Kamlet & Hurwitz, 1968; 

Keshavarz, 2007). The equations for PD and VD are given in subsection 3.2.2. 

2.1.5 Oxygen Balance 

The performance of energetic materials depends on the chemical reaction (detonation 

reaction) of the material (Gilman, 1995; Zhang et al., 2009). Detonation occurs when there is 

no external supply of oxygen contrary to combustion which require supply of oxygen 

(Gardiner & Burcat, 1984). In this regard, for detonation to occur there must be intra-

molecular oxygen sufficient to cause self oxidation of the compound and this is indicated by 

oxygen balance (OB). The OB is a qualitative indicator of the degree of oxidation of an 

energetic material (He & Shreeve, 2016; Wu et al., 2014). It is a result of sufficient or lack of 

oxygen atoms in a compound and the OB can be positive, negative or zero. A positive OB 

indicates that an explosive contains more oxygen than required for complete oxidation (Sun 

et al., 2019). Therefore, all metal atoms will be converted to metal oxides, non-metal to 
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gaseous non-metal oxides and excess oxygen will remain. For a negative OB it means that the 

compound contain less oxygen than required and thus more oxygen is required for complete 

oxidation (He et al., 2015). It is always leading to incomplete combustion which is 

accompanied by release of dangerous gases such as CO (Babkin et al., 1991). On the other 

hand, a zero OB is an indicator that the present oxygen in a compound is just enough to 

convert metals and non-metals to oxides (Wu et al., 2013; Yang et al., 2018). That is all 

carbon atoms to be converted to CO2, sulfur to SO2, hydrogen to H2O and all metals to their 

respective oxides. Some explosive parameters such as strength, sensitivity and performance 

depend on OB; as OB approaches zero, these parameters increase dramatically (Licht, 2000; 

Yan & Zeman, 2013). The OB is expressed as: 

 

WM

800ym2xz1600
OB


       (8) 

where x, y, m and z is the number of carbon, hydrogen, metal and oxygen atoms, 

respectively, and Mw is the molecular weight of an explosive. 

For the compounds involving fluorine while lacking metal atoms, it’s convenient to express 

the OB as α (degree of self-oxidation). The degree of oxidation is based on the number of 

atoms of all the species present in the compound: 

e4d

g2f
α




         (9) 

where d, e, f and g are the number of atoms of carbon, hydrogen, oxygen and fluorine, 

respectively.  

Different values of α have different implication on the sufficiency and insufficiency of 

oxygen in a molecule necessary for self combustion. That is, if α is greater or equal to one, 

implies the presence of sufficient number of oxygen in a compound otherwise insufficient 

oxygen atoms (Dalinger et al., 2018). 

2.2 Triazoles 

A triazole is a diunsaturated heterocyclic organic compound of the formula C2H3N3. It has 

five members in a ring of three nitrogen atoms and two carbon atoms (Kharb et al., 2011). 

Two sets of isomers exist for this compound which differ in the relative positions of the 
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nitrogen atoms. Each isomer has also two tautomers (Fig. 1) which differ depending on a 

nitrogen where hydrogen is bonded (Holm & Straub, 2011). They possess donor atoms 

(nitrogen atoms) in the ring enabling them to have numerous bonding modes including 

bridging (Holm & Straub, 2011). In 1885, Bladin reported the first triazole formed by 

reacting formamide and formhydrazine (Pellizzari, 1894; Potts, 1961). Afterwards formamide 

was condensed with hydrazine sulfate to give highest percentage yield of triazole (50%) 

which was later improved by treating N, N′- diformylhydrazine with excess NH3 at 200 oC 

giving up to 80% of triazole (Ainsworth & Jones, 1955; Gibson, 1969; Kovalev & Postovskii, 

1971; Lakhan & Ternai, 1974; Petree et al., 1981). 

1, 2, 3-Triazoles  1, 2, 4-Triazoles 

  

 

  

1H-1, 2, 3-

Triazole 

2H-1, 2, 3-

Triazole 

 
1H-1, 2, 4-Triazole 4H-1, 2, 4-Triazole 

Figure 1: Different triazole structures  

High nitrogen heterocycles, for instance triazoles and tetrazoles, provide a good backbones 

for the development of energetic materials used for various purposes in industries especially 

mining industry. Such compounds are often chemically modified by various functional 

groups so that they can acquire a desired set of properties (Zhang et al., 2019). A diversity of 

designs of high energy materials has been based on increasing the number of nitro groups in 

the heterocycle to enhance their energetic nature (Semenov et al., 2017). 

2.3 Role of Trinitromethyl Moiety in Energetic Compounds 

The requirement for self oxidation of energetic materials has brought the need for the 

presence of oxygen atoms in the compound (Kettner & Klapötke, 2014; Klapötke, 2019). 

However, it is desired that the compound detonates faster with lower rate of explosion 

(Kettner & Klapötke, 2014). Klapötke et al. (2014) reported that trinitromethyl moiety is one 

of the novel oxidizers which does not explode and enables the compound to detonate fast. 

Generally, the inclusion of nitro group contributes significantly to energetic performance 

while decreasing the heat of formation (Chavez et al., 2013; Chavez et al., 2009; Haiges & 

Christe, 2013).  

N

N

H
N

N N

H
N

N

N

H
N
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The modern design of energetic compounds concerns the introduction of explosophore 

groups (nitro, azido and azo) and energetic moieties such as C(NO2)2F and C(NO2)3 into a 

nitrogen containing framework so as to increase the density of the compound (Ostrovskii et 

al., 2017; Semenov et al., 2017). The C(NO2)3 moiety is the oxygen-rich group which 

provides balance for intermolecular combustion leading to nitrogen, water and carbon dioxide 

release (Sheremetev et al., 2012). Therefore, trinitromethyl moieties are responsible for 

providing oxygen balance of the molecule which facilitates detonation reaction by increasing 

the pressure and velocity of detonation (Fischer et al., 2010; Thottempudi et al., 2012). 

2.4 Nitrogen Rich Compounds 

Nitrogen rich compounds is the best alternative to traditional explosive materials (Gao et al., 

2020). Additionally, superior oxygen content is the greatest advantage to energetic materials 

as it improves the performance (Hervé et al., 2010). Comparing mono-trinitromethyl triazole, 

the bistrinitromethyl triazole has higher heat of formation resulted from the increased number 

of N atoms in the compound (Feng et al., 2016; Fischer et al., 2012; Ye et al., 2005). 

Zhang et al. (2019) reported a new family of high-energy density materials obtained by 

combining azo tetrazoles and triazoles resulting to (1) 5, 5′-bis(trinitromethyl)-

2,2′‐azo‐tetrazole, (2) 5, 5′-bis(trinitromethyl)-1,1′-azo-tetrazole, (3) 5, 5′-bis(trinitromethyl)-

3,3′-azo-1H-1,2,4-triazole, (4) 5, 5′-bis(trinitromethyl)-4,4′-azo-1,2,4-triazole, (5) 5, 5′-

bis(trinitromethyl)-3,3′-azo-1,2,3-triazole, (6) 4, 4′-bis(trinitromethyl)-3,3′-azo-1,2,3-triazole 

as shown in Fig. 2. Among these compounds, 5, 5′-bis(trinitromethyl)-3, 3′-azo-1H-1,2,4-

triazole had optimal energetic properties caused by the increase in the number of energetic 

nitro groups in the compound. 

 
Figure 2: Azo tetrazoles (1, 2) and triazole (3, 4, 5, 6) compounds 
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The computed energetic properties for the six compounds were compared with known data 

for common energetic materials (RDX and HMX) and summarized in Table 3 which was 

retrieved from Zhang et al. (2019). 

Table 3: Energetic properties of bis(trinitromethyl)-azo-azoles and common energetic 

materials 

Compound 
ΔfH°(c,298) 

(kJ mol–1) 
ρ (g cm–3) Q (cal g–1) 

VD  

(km s–1) 

PD 

(GPa) 
OB (%) 

1 996.76 1.93 1452 9.11 38.39 13.79 

2 1041.75 1.94 1471 9.19 39.15 13.79 

3 443.73 1.88 1621 9.10 37.66 3.46 

4 1076.08 1.89 1935 9.53 41.37 –3.46 

5 732.64 1.87 1759 9.26 38.93 –3.46 

6 785.02 1.89 1781 9.34 39.82 –3.46 

RDX 79.00 1.80 1501 8.75 34.70 –21.62 

HMX 102.41 1.90 1498 9.10 39.30 –21.62 

Zhang et al. (2019)  

Dharavath et al. (2017) prepared 5-(dinitromethyl)-3-(trinitromethyl)-1, 2, 4-triazole and its 

derivatives through the application of oxidative nitration with gem-trinitro compounds. The 

face-to-face π – π arrangement enforced by an amine fused ring cation caused the 

advancement of the energetic properties of polynitro azole compounds. They used Fox-7 

(1,1-dimino-2,2-dinitroethene) as a precursor, but their synthesis pathway was complex with 

many procedures. Multifunctional energetic structural materials release energy due to 

exothermic reactions devised from shock loading conditions. Currently, energetic materials 

derive their energies from carbon backbones oxidation and possess high enthalpy of 

formation. Azoles enthalpy of formation varies as the number of catenated nitrogen atoms 

varies (Liu et al., 2019). 

Zhang et al. (2019), obtained three fluorinated nitrotoluenes (Fig. 3) through nitration 

processes under elevated temperature. The structures obtained were studied using quantum 

mechanical calculations and crystalline investigations. Under the developed nitration method, 

a single nitration product was obtained without isomers. 
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3,5-difluoro-2,4-

dinitrotoluene (DFDNT) 

3,5-difluoro-2,4,6-

trinitrotoluene 

(DFTNT) 

α,α,α,3,5-pentafluoro-2,4-

dinitrotoluene (PFDNT) 

Figure 3: DFDNT, DFTNT and PFDNT compounds 

Diverse intermolecular interfaces influenced crystal packing; and molecular densities were 

increased after introducing fluoro groups into trinitrotoluene and dinitrotoluene. But the 

sensitivities of the prepared compounds were increased relative to that of dinitrotoluene and 

trinitrotoluene caused by weaker hydrogen bonding interactions (Zhang et al., 2019). 

Dalinger et al. (2018) synthesized novel energetic compounds using N-C(NO2)2NF2 and N-

C(NO2)2F units on the combination of tetrazoles and pyrazole to create energetic biazoles. 

Among them, the difluoroamine derivative showed the desired energetic properties due to the 

increased number of fluorine atoms in the molecule. The present study focused on 

fluorination of triazole derivatives; new high energy density materials were designed via 

introduction of fluorine atoms into ring/ azo chain of trinitromethyl azo triazoles aimed at 

enhancing energetic properties.   
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Compounds Investigated 

In this study, new high energy density materials were designed via introduction of fluorine 

atoms into trinitromethyl azo triazoles aimed at enhancing energetic properties; mono, di, tri 

and tetra fluorobis(trinitromethyl) azo triazoles molecules (Fig. 4) were proposed and 

investigated their properties. 

   

   

   

Figure 4: Structural formulae of bis(trinitromethyl) azo triazoles: Non-fluorinated (A) 

and designed fluorinated molecules (B-G) 
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3.2 Computational Details 

3.2.1 Computations of Structural and Thermodynamic Properties 

Density functional theory DFT/B3LYP (Becke, 1993) with 6-31G(d,p) basis set was used for 

optimization of ground state geometries and frequencies calculations for each molecule. 

Similar approach was used, for example, by Wei et al. (2009) for investigation of tetrazine-

based HEDM. The absence of imaginary frequencies confirmed that the obtained geometries 

corresponded to energy minima on the potential energy surfaces. Quantum chemical 

calculations were performed with the Gaussian 09 software (Frisch et al., 2009). 

Thermodynamic characteristics of reactions were obtained with extended 6-311++G(d,p) 

basis set. Based on the optimized geometrical parameters and vibrational frequencies, the 

thermodynamic functions (TDF) of gaseous species were calculated applying the ‘rigid rotor-

harmonic oscillator’ approximation with OpenThermo software (Tokarev, 2007). The 

electrostatic potential surface properties (molecular surface area, volume, charge balance and 

molecular density) were analyzed using Multiwfn software (Lu & Chen, 2012). Molecular 

design, visualization of molecular and electronic structures, IR spectra were done by using 

Avogadro (Ali et al., 2012), GaussView05 (Frisch et al., 2009) and ChemCraft (Zhurko & 

Zhurko, 2015) software. 

The energies of reactions (ΔrE) were calculated by considering the difference between the 

total energies of the products (ΣEprod) and reactants (ΣEreact): 

ΔrE = ΣEprod – ΣEreact         (10) 

The enthalpies of the reactions were computed by adding the zero-point vibration energies 

(ΔrZPVE) to the ΔrE: 

ΔrH°(g, 0) = ΔrE + ΔrZPVE        (11) 

To compute the enthalpy of formation of a gaseous species, the enthalpy of formation at 0 K, 

ΔfH°(g, 0) was calculated first, and then enthalpy of formation at 298 K, ΔfH°(g, 298): 

ΔfH°(g, 0) = ΣΔfH°prod(g, 0) – ΔrH°(g, 0)      (12) 

ΔfH°(g, 298) = ΣΔfH°prod(g, 298) – ΔrH°(g, 298)      (13) 

ΔrH°(g, 298) = ΔrH°(g, 0) + Δr[H°(g, 298) – H°(g, 0)]    (14) 
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where Δr[H°(g, 298) – H°(g, 0)] is the enthalpy increment of the reaction. The enthalpies of 

formation and enthalpy increments of small gaseous species involved in reaction have been 

taken from the IVTANTHERMO database (Gurvich et al., 1992). For the solid phase species, 

enthalpies of formation ΔfH°(c, 298) were calculated as follows:  

ΔfH°(c, 298) = ΔfH°(g, 298) – ΔsubH°(298)     (15) 

The enthalpy of sublimation ΔsubH°(298) was obtained as described in (Byrd & Rice, 2006; 

Karaghiosoff et al., 2003; Politzer et al., 1997): 

ΔsubH°(298) = hA2 + i(υσ2
tot)

0.5 + j      (16) 

where A is the molecular surface area, υσ2
tot is the electrostatic interaction index; both 

obtained from the Multiwfn program package (Lu & Chen, 2012); and the h, i, and j are the 

fitting parameters adopted from Byrd and Rice (2006). 

The Gibbs free energy is the measure of reaction spontaneity calculated by the following 

equation:  

ΔrG°(T) = ΔrH°(0) + Δr[H°(T) – H°(0)] – TΔrS°(T)    (17) 

where Δr[H°(T) – H°(0)] is the enthalpy increment and ΔrS°(T) entropy of the reaction. 

3.2.2 Computations of Energetic Properties 

Energetic properties indicate how the materials are powerful upon detonation. They include; 

molecular density (ρmol), detonation velocity (VD) and pressure (PD), detonation heat (Q), 

impact sensitivity (h50%), and oxidation coefficient (α). The density of molecules was 

estimated in terms of atoms in a molecule (Espinosa et al., 1999; Rice et al., 1999) as 

suggested by Politzer (Politzer et al., 2009): 

ρmol = 0.9183 (
MW

V
) + 0.0028(υσ2

tot) + 0.0443    (18) 

where V is the volume enclosed by the 0.001 atomic unit contour of electron density of the 

molecule, Mw is the molar mass of the compound, and υσ2
tot is the index of electrostatic 

interaction obtained using Multiwfn program package (Lu & Chen, 2012). 
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The detonation velocity VD and pressure PD indicate how the material is potent upon 

detonation. The higher are the values of these parameters, the better the performance of the 

material. The parameters were estimated using the following equations (Fischer et al., 2013; 

Mei et al., 2019; Keshavarz, 2005; 2008; Keshavarz & Pouretedal, 2004; Politzer et al., 2001; 

Wang et al., 2006): 

VD = 1.01 




 MQN (1 + 1.30 ρmol)     (19) 

PD = 1.56ρ2N MQ         (20) 

where N stands for the number of moles of gases produced per gram of the material upon 

detonation: 

W

prod

M

Σn
N           (21) 

Hence the inverse N gives the average molecular mass M of all detonation products: 

prod

W

Σn

M
M           (22) 

The detonation heat is: 













 



W

o

fprod
o

f

M

)298(c,298) (g,
Q

HH
    (23) 

The impact sensitivity, h50% was obtained using the generalized interact property function 

(Mei et al., 2019; Rice & Hare, 2002): 

h50% = 29.3 + 0.001386exp (48.84υ)      (24) 

where υ is the index of charge balance obtained using Multiwfn program package (Lu & 

Chen, 2012). 

The coefficient of oxidation α indicates how well the material provides its own oxidant 

(Dalinger et al., 2018). The increase in α increases the ability of the materials’ self-oxidation 
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(Dalinger et al., 2018). For the compound with the molecular formula CxHyNwOzFv, the 

coefficient of oxidation is estimated as follows (Dalinger et al., 2018): 























2

y
2x

2

v
z

α         (25) 

The computational details are summarized in Table 4. 

Table 4: Summary of computational details 

Procedures/Properties Software/Method Refs 

(i)   Molecular design 

(ii)   Drawing the structure of molecules 

(iii)  Visualization of inputs and outputs 

Avogadro  Ali et al. (2012) 

(iv)  Optimization of geometric structures 

(v)  Vibration spectra 

Gaussian 09, DFT/ 

B3LYP/6-31G(d,p) 

Frisch et al. (2009) 

(vi) Electrostatic potential surface analysis 

(molecular surface area, volume, charge 

balance, variation, and molecular density) 

Multiwfn  Lu and Chen (2012) 

      Thermodynamics of decomposition and  

combustion reactions:  
Gaussian 09, DFT/  

B3LYP/6-311++G(d,p) 

 

(vii) TDF of the designed species 
OpenThermo; Tokarev (2007) 

(viii) Reference data (TDF and enthalpies of 

formation) of the reactions products 

IVTANTHERMO 

Database 

Gurvich et al. (1992) 

(ix) Visualization of molecular structures, IR 

spectra 

GaussView05; 

ChemCraft 

Frisch et al. (2009) 

Zhurko and Zhurko 

(2015) 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Geometrical Properties of Fluorinated Triazole Derivatives 

The design started from the trinitromethyl azo triazole and then introduced fluorine atoms 

into azo group or/and triazole rings replacing the available hydrogen atoms. It is anticipated 

that introduction of fluorine atoms and the presence of trinitromethyl moieties will contribute 

to the energy density while azo and triazole skeleton rings will increase the stability of the 

molecule. 

The optimized configurations of the molecules are shown in Fig. 5; the most relevant 

geometrical parameters are given in Table 5.  

Table 5: Selected optimized geometrical parameters of non-fluorinated (A) and 

designed fluorinated bridged triazole derivatives (B-G) 

Molecule R1,2,3(N-N) R1,2(N-F) R1,2(C-F) α1,2(N-C-N) χ(N-N-N-N) ϕ1,2(C-N-N-C) 

A 1.368, 1.246, 1.368   110.0, 110.0 180.0 180.0, 180.0 

B 1.390, 1.464, 1.295 1.420  110.0, 110.0 176.0 176.0, 179.0 

C 1.371, 1.246, 1.365  1.304 112.0, 110.0 179.0 175.0, 176.0 

D 1.377, 1.506, 1.376 1.414, 1.414  109.0, 109.0 174.0 173.0, 175.0 

E 1.370, 1.246, 1.370  1.304, 1.304 112.0, 112.0 180.0 180.0, 180.0 

F 1.376, 1.511, 1.376 1.414, 1.414 1.303 112.0, 110.0 173.0 175.0, 173.0 

G 1.380, 1.423, 1.379 1.417, 1.420 1.302 112.0, 112.0 154.0 78.0, 172.0 

Note: Bond lengths (Å), bond angles (°) and dihedral angles (°) 

R1,2,3(N-N) are R1(N3-N4), R2(N4-N5) and R3(N5-N6)  

R1,2(C-F) are left and right side, equivalent bonds 

R1,2(N-F) are the bond lengths on the azo group R1(N4-F), R2(N5-F) 

α1,2(N-C-N) are the bond angles α1(N2-C2-N3) and α2(N6-C3-N7) in the left and right triazole 

rings, respectively. 

φ1,2(C-N-N-C) are the dihedral angles φ1(C1-N3-N6-C4) and  φ2(C2-N4-N5-C3) between two 

azo rings.  
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Figure 5: Optimized molecular structures of non-fluorinated (A) and designed 

fluorinated bridged triazole derivatives (B-G) 

The analysis of the optimized parameters shows that the addition of fluorine atoms to the 

original trinitromethyl azo triazole molecule A affects mostly the nearest bonds as well as the 

planarity of the structure. In the molecules B, D, F and G where the F-atoms are added to the 

azo chain, the formed N-F bonds are maintained perpendicular to the chain moiety and the 

central double N=N bond transforms into the single bond which brings an elongation of the 
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R2(N4-N5) from 1.246 up to 1.511 Å. When the fluorine atoms are attached to the triazole 

rings (molecules C, E, F, G), they just replace the hydrogen atoms forming alike C-F bonds 

of 1.302 – 1.304 Å length while keeping the rings coplanarity and slightly increasing bond 

angles N-C-N from 109° to 112°. All compounds except G have close to a coplanar structure, 

dihedral angles between the rings and in the chain N-N-N-N range from 173° to 180°, 

whereas the molecule G with four F atoms, two at the chain and two at the rings, has a bent 

configuration with the angles φ1(C1-N3-N6-C4) = 78° and χ(N-N-N-N) = 154°. 

4.2 Vibrational Analysis 

The computed vibrational spectra of the designed molecules confirmed the absence of 

imaginary frequencies; the simulated IR absorption spectra are shown in Fig. 6. For all 

compounds, most intensive peaks between ~1700 and 1740 cm–1 are assigned to asymmetric 

stretching of N=O bonds in the trinitromethyl moieties and lower peaks between 806 and 815 

cm–1 to bending vibrations of the same bonds. Other strong absorptions near 1350 cm–1 and 

1370-1430 cm–1 correspond to stretching vibrations of C-N bonds of the trinitromethyl 

moieties and C-N bonds of the triazole rings, respectively. Besides, there are weak absorption 

peaks at ~600-740 cm–1 which correspond to the bending vibrations of the triazole rings. For 

the fluorinated compounds B, D, F and G, the stretching vibrations of N-F bonds of the 

hydrazine group are seen at ~900-955 cm–1. For the molecules C, E, F and G, the sharp 

absorption peaks at ~1650 cm–1 correspond to C-F stretching of the triazole skeleton. 
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Figure 6: Computed infrared spectra of non-fluorinated (A) and fluorinated (B-G) 

bridged triazole derivatives 

4.3 Electronic Structure of Gaseous Molecules  

The intramolecular charge transfer within the material can be understood through molecular 

orbitals analysis. It is expected that good HEDM should have a distinct separation of electron 

density between the HOMO and LUMO and reasonably small energy gap Eg for electrons 

transition. Also, it was noticed that in some cases a correlation between energy gap and 

sensitivity of the explosive materials may exist (Gu et al., 2014; Michalchuk et al., 2019). 

Negative correlation between energy gap and detonation velocity or pressure was reported in 

(Mukhanov, 2014). For the seven compounds A-G, the frontier molecular orbitals and energy 
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gaps are displayed in Fig. 7. The green colour denotes the negative phase, and deep red 

indicates the positive phase. 

    

    

    

Figure 7: Graphical representation of HOMO and LUMO isosurfaces, energy gaps, and 

energies of molecules A–G 

Higher electron density is found near atoms/groups which possess higher electronegativity; 

here they are fluorine and nitrogen atoms in the rings or nitro groups. Redistribution of 

electron density between the HOMO and LUMO is clearly seen for the fluorinated species B, 

D, F and G while not observed for others (A, C and E). Therefore, the fluorine attachment to 

the hydrazine chain favours the transfer of electrons in the HOMO→LUMO transition. The 

energy gap increases upon fluorine attachment to the triazole rings, A (3.64 eV) < C (4.17 

eV) < E (4.27 eV), but when F atoms join the central hydrazine group, the Eg decreases, B 
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(3.26 eV) < D (3.78 eV) < F (3.84 eV) < G (4.18 eV). The highest Eg = 4.27 eV is obtained 

for the E compound and the lowest Eg = 3.26 eV is for B molecule. This indicates that the 

addition of fluorine on the azo chain is helpful in decreasing the energy gap. These values are 

comparable to the experimental Eg values for traditional explosive compounds; 3.4 eV (RDX) 

(Perger, 2003), 4.27 eV (PETN) (Mukhanov, 2014) and 5.32 eV (HMX) (Mukhanov, 2014). 

Therefore, the compounds B and D for which the requirements of good electron density 

separation and smaller energy gaps are met, are anticipated to be better HEDM. 

4.4 Thermodynamics of Detonation and Combustion Gaseous Reactions  

Detonation and combustion reactions with formation of simple products CO, CO2, H2O, HF, 

F2 and others, have been considered for gaseous compounds A-G (Table 2). Energies ∆rE and 

enthalpies ∆rH°(0) of the reactions have been computed using equations (11) and (12). As is 

seen, all reactions considered are highly exothermic; the values of ∆rH°(0) vary from –374 to 

–4499 kJ mol–1. Generally, the biggest amount of energy released through detonation 

channels with the formation of CO2, N2, HF/F2 and the smallest enthalpy of detonation is 

observed for the reactions A4-G4 with the C, CO and O2 products. Clearly seen that 

fluorination of the bridged trinitromethyl azo triazole alters the heat effect. That is in 

accordance with findings by other researchers (Dalinger et al., 2018; Martinez et al., 2012; 

Ye et al., 2007; Zhang et al., 2019) that most exothermic reactions relate to the hydrogen 

fluoride being formed among the products. If compare the enthalpies of most exothermic 

detonation reactions, i.e. A1-G1, the values of ∆rH°(0) become more negative due to the azo-

chain fluorination in the absence of triazole ring fluorination, from –3367 (A1) up to –4216 

(B1) and –3923 kJ mol–1 (D1); whereas fluorination of the rings brings to lower heat effect in 

reactions C1, E1-G1 than for the non-fluorinated original compound (A1). 
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Table 6: Thermodynamic characteristics of gas phase reactions and enthalpies of formation of gaseous compounds, all values in kJ mol–1 

 Equation of chemical reaction –∆rE –∆rZPVE –∆rH°(0) ∆r[H°(298) – H°(0)] ∆fH°(0) ∆fH°(298) 

A1 C6H2N14O12 = CO + 5CO2 + 7N2 + H2O 3237.7 129.0 3366.6 47.11 1048.2 1095.3 

A2 C6H2N14O12 =0.5C + 5.5CO2 + 7N2 + H2O 2897.3 126.9 3024.2 46.01 978.5 1024.5 

A3 C6H2N14O12 = 6CO + 7N2 + H2O + 2.5O2 1758.8 191.8 1950.6 69.17 1028.8 1098.0 

A4 C6H2N14O12 = 5CO + C + 7N2 + H2O + 3O2 782.3 200.2 982.4 71.38 885.7 957.0 

A5 C6H2N14O12 + 0.5O2 = 6CO2 + 7N2 + H2O 3533.4 116.4 3649.8 42.70 1052.0 1094.7 

 Average ∆fH°(A, g) 999±70 1054±62 

B1 C6H3N14O12F = CO + 5CO2 + 7N2 + H2O + HF 4072.5 143.6 4216.1 52.3 994.3 1046.6 

B2 C6H3N14O12F = 0.5C + 5.5CO2 + 7N2 + H2O + HF 3732.1 141.5 3873.6 55.4 924.6 980.0 

B3 C6H3N14O12F = 6CO + 7N2 + H2O + 2.5O2 +HF 2593.6 206.5 2800.0 74.4 974.9 1049.3 

B4 C6H3N14O12F = 5CO + C + 7N2 + H2O + 3O2 +HF 1617.1 214.8 1831.9 76.6 831.8 908.3 

B5 C6H3N14O12F + 0.5O2 = 6CO2 + 7N2 + H2O+ HF 4368.2 131.0 4499.3 52.5 998.1 1050.6 

 Average ∆fH°(B, g) 945±70 1007±63 

C1 C6H1N14O12F = 6CO2 + 7N2 + HF 3414.0 121.8 3535.8 43.4 903.6 947.0 

C2 C6H1N14O12F = 0.5CO + 5.5CO2 + 7N2 + 0.5H2O + 0.5F2 3109.0 124.1 3233.1 48.4 894.4 942.8 

C3 C6H1N14O12F = 6CO + 7N2 + 3O2 + HF 1639.3 197.2 1836.5 69.9 880.4 950.3 

C4 C6H1N14O12F = 5CO + C + 7N2 + 0.5H2O + 3.25O2 + 0.5F2 505.7 201.6 707.3 70.7 730.0 800.7 

C5 C6H1N14O12F+0.25O2 = 6CO2 + 7N2 + 0.5H2O + 0.5F2 3256.9 117.8 3374.7 42.0 896.4 933.9 

 Average ∆fH°(C, g) 861±74 915±64 

D1 C6H2N14O12F2 = 6CO2 + 7N2 + 2HF 3791.9 130.6 3922.6 48.4 1017.2 1065.6 

D2 C6H2N14O12F2 = 0.5C + 5.5CO2 + 7N2 + H2O + F2 2841.5 133.2 2974.8 53.1 929.1 982.3 

D3 C6H2N14O12F2 = 6CO + 7N2 + 3O2 +HF 2017.2 206.1 2223.3 74.9 994.0 1068.8 
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 Equation of chemical reaction –∆rE –∆rZPVE –∆rH°(0) ∆r[H°(298) – H°(0)] ∆fH°(0) ∆fH°(298) 

D4 C6H2N14O12F2 = 5CO + C + 7N2 + 3.5O2 + 2HF 1040.7 214.4 1255.2 77.1 850.8 927.9 

D5 C6H2N14O12F2 + 0.5O2 = 6CO2 + 7N2 + H2O+ F2 3477.7 122.8 3600.5 50.2 1002.7 1052.9 

 Average ∆fH°(D, g) 959±69 1020±62 

E1 C6N14O12F2 = 6CO2 + 7N2 + F2 2980.0 119.2 3099.2 45.8 740.4 786.2 

E2 C6N14O12F2 = 0.5C + 5.5CO2 + 7N2 + 0.5O2 + F2 2343.9 129.6 2473.6 48.7 666.8 715.6 

E3 C6N14O12F2 = 6CO + 7N2 + 3O2 + F2 1205.4 194.6 1400.0 67.7 717.1 784.8 

E4 C6N14O12F2 = 5CO + C + 7N2 + 3.5O2 + F2 228.9 203.0 431.8 69.9 574.0 643.9 

E5 C6N14O12F2 + 0.5O2 = 6CO2 + 7N2 + F2O 2953.3 116.1 3069.3 43.6 737.2 780.8 

 Average ∆fH°(E, g) 687±70 742±63 

F1 C6H1N14O12F3 = 6CO2 + 7N2 + HF + F2 3345.5 128.6 3474.1 46.4 841.9 888.3 

F2 C6H1N14O12F3 = 0.5CO + 5.5CO2 + 7N2 + 0.5H2O + 1.5F2 3040.5 131.0 3171.4 47.2 832.8 794.1 

F3 C6H1N14O12F3 = 6CO + 7N2 + 3O2 + HF + F2 1570.8 204.0 1774.8 72.8 818.7 891.6 

F4 C6H1N14O12F3 = 5CO  + C + 7N2 + 0.5H2O + 3.25O2 + 1.5F2 437.2 208.4 645.6 73.6 668.3 742.0 

F5 C6H1N14O12F3 + 0.25O2 = 6CO2 + 7N2 + 0.5 H2O + 1.5F2 3188.4 124.7 3313.0 45.0 834.7 769.9 

 Average ∆fH°(F, g) 799±74 817±69 

G1 C6N14O12F4 = 6CO2 + 7N2 + 2F2 2915.7 126.0 3041.8 48.9 682.9 731.8 

G2 C6N14O12F4 = 0.5C + 5.5CO2 + 7N2 + 0.5O2 + 2F2 2279.6 136.5 2416.1 51.9 609.4 661.3 

G3 C6N14O12F4 = 6CO + 7N2 + 3O2 + 2F2 1141.1 201.5 1342.5 70.8 659.7 730.5 

G4 C6N14O12F4 = 5CO + C + 7N2 + 3.5O2 + 2F2 164.6 209.8 374.4 73.0 516.5 589.5 

G5 C6N14O12F4 + O2 = 6CO2 + 7N2 + 2F2O 2862.2 119.8 2982.0 44.4 676.6 721.1 

 Average ∆fH°(G, g) 629±69 687±62 



28 

The enthalpies of most exothermic detonation reactions (A1-G1) and combustion reactions 

(A5-G5) are shown in Fig. 8. 

 

Figure 8: Enthalpies of gaseous detonation and combustion reactions against molecular 

species 

A symbatic behaviour is well seen for the enthalpies of detonation and combustion reactions 

with maxima for E and G and minima for B and D. Worth to note, for the A and B molecules, 

combustion is more exothermic compared to detonation. For both types of reactions, the 

∆rH°(0) becomes more negative as the fluorine atoms are attached on the hydrazine chain and 

less negative under ring fluorination. Among all compounds, the molecules B and D with one 

and two F atoms attached to the azo-chain have most negative enthalpies of the reactions.  

The computed enthalpies of the reactions ∆rH°(0) and enthalpy increments ∆r[H°(298) – 

H°(0)] have been used to obtain enthalpies of formation ∆fH°(0) and ∆fH°(298) of the 

gaseous species according to equations (12, 13) and (14). The averaged values of enthalpies 

of formations over all five reactions have been calculated for each compound, the 

uncertainties are estimated as standard deviations (Table 6). The thermodynamic properties of 

individual gaseous species A-G, enthalpies of formation ∆fH°(298) and entropies S°(298), are 

displayed in Fig. 9. 
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(a) 

 

 
(b) 

 

Figure 9: Thermodynamic characteristics of gaseous species A-G: (a) enthalpies of 

formation ∆fH°(g, 298); (b) entropies S°(g, 298) 

It is observed generally that the consequent addition of fluorine atoms to the molecule from A 

to G results in irregular change of both characteristics. The position of the F atoms influences 

the alteration; the hydrazine chain fluorination brings to a larger change of both ∆fH°(g, 298) 

and S°(g, 298) compared to the triazole rings fluorination. The most distorted geometry of the 
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G compound which contains four F atoms, two on the hydrazine chain and two on the rings, 

evidently promotes the greatest entropy among all species. 

Temperature dependences of the TDF for different decomposition reactions were also 

considered. For most exothermic detonation reactions A1-G1, the entropies ΔrS°(T) and 

Gibbs free energies ΔrG°(T) over a broad temperature range are presented in Fig. 10. The 

entropies of all reactions are positive and rather high (Fig. 10a); at room temperature the 

values of ΔrS°(298) range from ~1980 (D1) to 2150 J mol–1 K–1 (F1 and G1); which is 

apparently attributed to the greater number of detonation products, 15 moles of products 

formed from one mole of reactant. There are two groups of curves distinguished; the first one 

of lower ΔrS°(T) combines three decay reactions, of the original (A1) and triazole rings 

fluorinated compounds (C1, E1). The second one of higher ΔrS°(T) combines the reactions of 

the rest four species, each of them having F atoms at the hydrazine chain. In both groups, the 

entropies ΔrS°(T) slightly decrease by ~ 100 J mol–1 K–1 subject to temperature increase to 

1000 K.  

The temperature dependences of Gibbs energies of the reactions have been computed using 

equation (10), and the results are presented in Fig. 10b. The values of ΔrG°(T) are negative 

attributing to exothermicity of the reactions and positive ΔrS°(T), and keep on descending 

with temperature rise depending on the number and position of attachment of fluorine atoms. 

Therefore, all reactions are predicted to be spontaneous; moreover, only hydrazine chain 

fluorinated compounds (B and D) show higher numerical values of Gibbs energy compared 

to the ring fluorinated (C, E, F and G) and non-fluorinated (A) species. 
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(a) 

 

(b) 

Figure 10: Temperature dependences of (a) entropies ΔrS°(T) and (b) Gibbs free 

energies ΔrG°(T) of most exothermic detonation reactions 

4.5 Energetic Properties of Solid Energetic Compounds 

Energetic properties include several characteristics of the materials which signify strength, 

stability and ability to detonate. These properties, enthalpies of formation of solid compounds 

∆fH°(c, 298), molecular density ρmol, the heat of detonation Q, detonation velocity VD and 

pressure PD, impact sensitivity h50%, and coefficient of oxidation α, calculated by using 

equations (18) – (25) for seven compounds A-G, are presented in Table 7; for comparison, 

two conventional explosives (RDX and HMX) and four nearly related energetic compounds 
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reported earlier in literature (Byrd & Rice, 2006; Mei et al., 2019; Zhang et al., 2019; Jin et 

al., 2014; Politzer & Murray, 2011; Rice et al., 1999) are also considered. 

Table 7: The energetic properties of the compounds A-G, together with related 

energetic compounds reported in literature 

Compound 

 

ΔfH°(c, 298) ρmol  Q VD PD h50%  
α 

 kJ mol–1 g cm–3  cal g–1 km s–1 GPa cm 

A, C6H2N14O12 862 ± 62 1.96 1646 9.5 42.3 30.8 0.92 

B, C6H3N14O12F 811 ± 63 1.98 1688 9.7 44.3 32.0 0.93 

C, C6H1N14O12F 724 ± 64 2.01 1672 9.6 44.0 30.1 1.00 

D, C6H2N14O12F2 868 ± 62 2.03 1691 9.8 45.5 33.1 1.00 

E, C6N14O12F2 551 ± 63 2.07 1398 9.3 41.6 29.8 1.08 

F, C6H1N14O12F3 623 ± 69 2.09 1367 9.4 42.6 31.1 1.08 

G, C6N14O12F4 492 ± 62 2.14 1272 9.3 42.4 30.1 1.17 

RDXa 79.0 1.80 1501 8.8 34.7 28.0 0.67 

HMXb 102.4 1.90 1498 9.1 39.3 32.0 0.67 

C4H6N8O4
c 592.1 1.82 1574 8.7 33.4   

C6H2N14O12
d 443.7 1.88 1621 9.1 37.7   

C3H2N12O5
e 740.6 1.82 1605 8.9 35.7   

C6H6N12O12
f    2.04 1567 9.4 44.1   

a Byrd and Rice (2006), Mei et al. (2019), Zhang et al. (2019) 
b Mei et al. (2019), Zhang et al. (2019), Rice et al. (1999) 
c Jin et al. (2014) 
d Zhang et al. (2019) 
e Mei et al. (2019) 
f Politzer and Murray (2011) 

The enthalpies of sublimation ΔsubH°(298) of the compounds A-G have been evaluated using 

equation (15) and found to be close from one molecule to another within the range from 192 

to 196 kJ mol–1. Based on the ΔsubH°(298) and enthalpies of formation of gaseous species 

∆fH°(g, 298), the enthalpies of formation of solid compounds A-G ∆fH°(c, 298) have been 

obtained by equation (15). For all solid compounds A-G, the enthalpies ∆fH°(c, 298) are 

positive, from ~500 to 900 kJ mol–1 and change depending on the position attachment of 

fluorine atoms (the trend is similar to that for gaseous species in Fig. 9a). The calculated 

enthalpies of formation for the compounds A-G are compared to nearly related explosives 

reported earlier in Table 7. Due to fluorination, the enthalpies of formation of all designed 
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compounds are much higher than those of common explosives, 79.0 kJ mol–1 (RDX) and 

102.4 kJ mol–1 (HMX).  

Density is one of the significant properties the material must possess as it accounts for its 

strength; the higher the density, the stronger the material and hence more energy the material 

will produce upon detonation. It is observed that for all compounds considered in this study 

the density increases as the number of fluorine atoms is increased. The range of densities is 

from 1.96 g cm–3 for the non-fluorinated molecule A to 2.14 g cm–3 for a highly fluorinated 

G. The increase in densities can be justified by high mass of fluorine atom with small effect 

on the volume of the molecule and strong π–bonding between the triazole rings and 

azo/hydrazine group resulting into dense packing. The values of ρmol for the A-G species are 

comparable to those for nearly related materials reported in the literature, which are in the 

range 1.80 – 2.04 g cm–3 (Table 7). 

Detonation heat is a measure of the material strength and stability as it signifies the amount of 

energy released as the material detonates. The performance of the material is estimated 

depending on the value of Q; the higher the value of Q, the greater the material’s 

performance. The detonation heats have been computed using equation (23) for most 

exothermic detonation processes A1-G1 where the enthalpies of formation of solid reactants 

∆fH°(c, 298) have been taken into account. Among all designed compounds, B, C and D have 

higher detonation heat Q greater than 1600 cal g–1. This may be due to hydrazine chain 

fluorination as well as sufficient number of hydrogen atoms in a molecule for complete 

detonation. Still, these Q values are close to those of reference and original compounds. 

Worth to note that fluorination of the triazole rings does not bring the elevation of the 

detonation heat.  

The detonation velocity VD and pressure PD are the indicators of HEDM performance. It is 

expected for the best material to have high detonation velocity and pressure. As seen from 

Table 7, the designed compounds B, C and D show a slight elevation in VD from 9.5 km s–1 

for the original A to 9.8 km s–1 for D that is a bit greater compared to the reference materials, 

8.7 – 9.4 km s–1. There is a rise in pressures of detonation from ~42 GPa for non-fluorinated 

compound A to ~46 GPa for di-fluorinated compound D. This can be associated with the 

number of hydrazine fluorinated bonds in these molecules. Among all, the B and D have the 

highest pressures. The values of PD are comparable to those of nearly related and traditional 

energetic materials HMX (39.3 GPa) and C6H6N12O12 (44.1 GPa). The elevation in 
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detonation pressures and velocity observed for some of the designed species is an indication 

that fluorination helps in increasing the energy density of the materials. 

The impact sensitivity h50% is the indicator of the safeness of the material, and it shows how 

the material responds to external stimuli such as shock and friction. It is measured in terms of 

drop height that is the height from which fifty percent of the drops result in the reaction of the 

sample (Rice & Hare, 2002); and the higher the value of h50%, the lower the impact sensitivity 

(Mei et al., 2019). It is expected that the best material will have moderate sensitivity which is 

comparable to that of common explosives. The computed impact sensitivities of all designed 

compounds range from 30 to 33 cm, that is comparable to those of common energetic 

materials HMX (32 cm) and RDX (28 cm). 

The degree of self-oxidation α of the compound indicates the ability of the material to 

detonate and associated with the content of oxidant, oxygen and fluorine in this case. The 

higher value of α indicates that the material is more feasible for self-oxidation. For the 

compounds A-G, the values of α obtained by equation (25) are between 0.92 and 1.17 (Table 

7). Compounds C, D, E, F, and G have coefficients of oxidation greater or equal to one, 

which is acceptable for HEDM. 

Overall, among newly designed compounds, B and D exhibit improved energetic properties 

compared to other fluorinated triazoles as well as original compound A. Regarding most 

informative properties, the detonation heat, velocity and pressure, the compounds B and D 

are predicted to be on the top of the rank. It is suppose that, their enhanced energetic 

characteristics relate to the structural features, namely, fluorination of the hydrazine chain. At 

the same time, the fluorination of the triazole rings impairs the properties.  
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CHAPTER FIVE 

CONCLUSION AND RECOMENDATIONS 

5.1 Conclusion 

In this study, fluorinated HEDM were designed by introducing fluorine atoms into original 

bridged trinitromethyl azo triazoles molecule to obtain mono-, di-, tri- and tetrafluorinated 

species. Molecular geometries, infrared spectra, frontier molecular orbitals, thermodynamic 

and energetic properties were computed and analyzed. The position and number of fluorine 

substituents resulted in a noticeable change in the enthalpies of formation of gaseous and 

solid compounds. Generally, introduction of the F atoms into azo linkage brings to an  

elevation of energetic properties while the triazole ring fluorination lowers the detonation 

characteristics. Among the designed triazoles, the species with only fluorinated hydrazine chain may be 

regarded as potential candidates of HEDM with advanced energetic properties compared to 

common explosives. The results provide basic information for invention and synthesis of 

novel energetic materials. 

5.2 Recommendations 

Highly nitrated energetic materials have been investigated by using quantum chemical 

methods and found to release high energy compared to traditional explosives. The challenge 

of these materials is their sensitivities which makes them environmentally unfriendly and 

complex synthesis methods. In this regard, the design of new fluorinated materials with 

different number and position of fluorine atoms on the bridged trinitromethyl triazole 

framework were proposed. The properties computed for azo fluorination show the 

improvement in performance of the material while ring fluorination shows no any 

improvement but still further studies are recommended as follows: 

(i) Investigation of the mechanism of azo and ring fluorination on the triazole 

framework. 

(ii) Computational studies on tris, tetra and higher aromatic ring energetic compounds 

and their derivatives are also recommended. 

(iii) Further studies on the influence of theoretical approach on the results, for instance 

using different DFT functionals, effect of dispersion energy and excited states. 
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APPENDICES 

Appendix 1: Optimized Cartesian coordinates (in Å) of atoms in compound A 

No Atomic number  Atomic type X Y Z 

1 6 O –4.101 –0.203 0.643 

2 7 N –4.962 –1.078 1.085 

3 7 N –4.300 –2.287 1.221 

4 6 C –3.058 –2.115 0.857 

5 7 N –2.864 –0.801 0.478 

6 7 N –1.758 –0.109 0.067 

7 7 N –0.765 –0.850 –0.067 

8 7 N 0.341 –0.159 –0.477 

9 6 C 0.534 1.156 –0.856 

10 7 N 1.776 1.328 –1.220 

11 7 N 2.438 0.119 –1.084 

12 6 C 1.577 –0.756 –0.643 

13 6 C 1.860 –2.184 –0.355 

14 7 N 3.252 –2.584 –0.908 

15 7 N 0.789 –3.101 –1.009 

16 7 N 1.876 –2.526 1.158 

17 8 O 4.181 –2.083 –0.309 

18 8 O 3.266 –3.345 –1.855 

19 8 O 1.211 –1.789 1.869 

20 8 O 0.484 –2.783 –2.142 

21 6 C –4.383 1.225 0.354 

22 7 N –5.775 1.625 0.907 

23 7 N –4.399 1.567 –1.158 

24 8 O –5.041 2.545 –1.478 

25 8 O –3.734 0.829 –1.869 

26 8 O –6.704 1.124 0.309 

27 1 H –2.276 –2.859 0.843 

28 7 N –3.313 2.142 1.009 

29 8 O –2.890 3.068 0.342 

30 8 O –3.008 1.824 2.142 

31 8 O 2.518 –3.504 1.478 

32 8 O 0.367 –4.028 –0.342 

33 8 O –5.790 2.386 1.854 

34 1 H –0.247 1.899 –0.843 
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Appendix 2: Optimized Cartesian coordinates (in Å) of atoms in compound B 

No Atomic number Atomic type X Y Z 

1 6 C –2.417 0.023 -0.139 

2 7 N -3.344 -0.896 -0.091 

3 7 N -2.742 -2.115 -0.336 

4 6 C -1.463 -1.910 -0.512 

5 7 N -1.194 -0.564 -0.389 

6 7 N -0.009 0.131 -0.593 

7 7 N 0.943 -0.455 0.351 

8 7 N 2.141 0.253 0.260 

9 6 C 2.401 1.601 0.287 

10 7 N 3.685 1.809 0.135 

11 7 N 4.303 0.583 0.022 

12 6 C 3.372 -0.335 0.089 

13 1 H -0.705 -2.647 -0.733 

14 1 H 1.633 2.353 0.395 

15 6 C 3.589 -1.800 0.046 

16 7 N 3.294 -2.522 1.389 

17 7 N 2.682 –2.458 –1.029 

18 7 N 5.075 -2.121 -0.272 

19 8 O 5.833 -1.833 0.630 

20 8 O 5.319 -2.623 -1.349 

21 8 O 2.744 -1.935 -2.121 

22 8 O 1.993 -3.403 -0.678 

23 8 O 2.578 -1.924 2.177 

24 6 C -2.614 1.475 0.071 

25 7 N -2.005 2.008 1.393 

26 7 N -1.955 2.307 -1.070 

27 7 N -4.126 1.815 0.108 

28 8 O -4.562 2.449 -0.831 

29 8 O -4.702 1.400 1.092 

30 8 O -2.084 1.827 -2.178 

31 8 O -1.400 3.340 -0.745 

32 8 O -1.011 1.411 1.796 

33 8 O -2.532 2.978 1.886 

34 8 O 3.793 -3.620 1.517 

35 9 F 0.479 -0.324 -1.845 

36 1 H 0.523 -0.279 1.267 
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Appendix 3: Optimized Cartesian coordinates (in Å) of atoms in compound C 

No Atomic number Atomic type X Y Z 

1 6 C –3.095 –0.095 –0.047 

2 7 N –4.051 –0.978 –0.126 

3 7 N –3.474 –2.232 –0.248 

4 6 C –2.190 –2.059 –0.234 

5 7 N –1.857 –0.720 –0.109 

6 7 N –0.679 –0.018 –0.105 

7 7 N 0.325 –0.756 –0.091 

8 7 N 1.484 –0.035 –0.115 

9 6 C 1.744 1.318 –0.243 

10 7 N 3.034 1.515 –0.261 

11 7 N 3.662 0.285 –0.141 

12 6 C 2.734 –0.627 –0.057 

13 6 C 2.967 –2.087 0.075 

14 7 N 2.137 –2.884 –0.972 

15 7 N 2.606 –2.654 1.471 

16 7 N 4.465 –2.410 –0.161 

17 8 O 4.741 –2.985 –1.195 

18 8 O 5.198 –2.044 0.733 

19 8 O 1.772 –2.015 2.095 

20 8 O 3.162 –3.682 1.791 

21 8 O 1.682 –3.954 –0.622 

22 8 O 2.045 –2.338 –2.057 

23 6 C –3.278 1.372 0.083 

24 7 N –2.403 2.125 –0.956 

25 7 N –2.901 1.928 1.480 

26 7 N –4.762 1.754 –0.154 

27 8 O –5.509 1.391 0.730 

28 8 O –5.014 2.366 –1.172 

29 8 O –2.099 1.258 2.111 

30 8 O –3.416 2.981 1.792 

31 8 O –1.804 3.112 –0.571 

32 8 O –2.409 1.629 –2.067 

33 9 F –1.280 –2.987 –0.334 

34 1 H 0.972 2.068 –0.321 
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Appendix 4: Optimized Cartesian coordinates (in Å) of atoms in compound D 

No Atomic number Atomic type X Y Z 

1 6 C –2.529 1.180 –0.443 

2 7 N –3.417 0.341 –0.897 

3 7 N –2.855 –0.925 –0.880 

4 6 C –1.639 –0.823 –0.420 

5 7 N –1.364 0.500 –0.134 

6 7 N –0.232 1.089 0.381 

7 7 N 0.926 0.499 –0.381 

8 7 N 2.059 1.089 0.133 

9 6 C 2.334 2.412 0.419 

10 7 N 3.549 2.514 0.879 

11 7 N 4.112 1.248 0.896 

12 6 C 3.224 0.409 0.442 

13 6 C –2.715 2.646 –0.287 

14 7 N –1.546 3.415 –0.954 

15 7 N –4.053 3.096 –0.934 

16 7 N –2.783 3.113 1.190 

17 8 O –2.271 2.362 2.004 

18 8 O –3.315 4.187 1.381 

19 8 O –3.982 3.789 –1.928 

20 8 O –5.035 2.700 –0.341 

21 8 O –1.288 3.050 –2.084 

22 8 O –0.994 4.278 –0.294 

23 6 C 3.410 –1.057 0.287 

24 7 N 2.240 –1.825 0.955 

25 7 N 3.477 –1.525 –1.190 

26 7 N 4.748 –1.507 0.934 

27 8 O 4.678 –2.199 1.928 

28 8 O 5.729 –1.111 0.340 

29 8 O 4.008 –2.599 –1.379 

30 8 O 2.966 –0.774 –2.004 

31 8 O 1.688 –2.689 0.296 

32 8 O 1.984 –1.460 2.085 

33 1 H –0.927 –1.623 –0.274 

34 1 H 1.622 3.212 0.273 

35 9 F –0.015 0.491 1.644 

36 9 F 0.710 1.097 –1.644 
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Appendix 5: Optimized Cartesian coordinates (in Å) of atoms in compound E 

No Atomic number Atomic type X Y Z 

1 6 C –3.309 1.257 0.659 

2 7 N –4.162 0.563 1.358 

3 7 N –3.520 –0.575 1.822 

4 6 C –2.302 –0.534 1.390 

5 7 N –2.077 0.617 0.634 

6 7 N –1.014 1.102 –0.079 

7 7 N 0.019 0.423 0.079 

8 7 N 1.083 0.908 –0.633 

9 6 C 1.308 2.049 –1.389 

10 7 N 2.526 2.100 –1.822 

11 7 N 3.167 0.962 –1.358 

12 6 C 2.314 0.268 –0.659 

13 6 C 2.603 –1.020 0.019 

14 7 N 1.911 –2.241 –0.637 

15 7 N 4.127 –1.303 –0.010 

16 7 N 2.152 –0.982 1.508 

17 8 O 1.695 –2.004 1.976 

18 8 O 2.326 0.093 2.053 

19 8 O 4.556 –1.594 –1.107 

20 8 O 4.718 –1.207 1.047 

21 8 O 0.900 –1.989 –1.274 

22 8 O 2.425 –3.320 –0.435 

23 6 C –3.598 2.545 –0.019 

24 7 N –3.147 2.506 –1.508 

25 7 N –2.907 3.766 0.637 

26 7 N –5.122 2.828 0.009 

27 8 O –5.551 3.118 1.107 

28 8 O –5.713 2.730 –1.048 

29 8 O –1.896 3.514 1.275 

30 8 O –3.420 4.845 0.434 

31 8 O –3.320 1.431 –2.053 

32 8 O –2.690 3.529 –1.977 

33 9 F –1.364 –1.405 1.599 

34 9 F 0.369 2.930 –1.598 
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Appendix 6: Optimized Cartesian coordinates (in Å) of atoms in compound F 

No Atomic number Atomic type X Y Z 

1 6 C –2.564 0.812 –0.468 

2 7 N –3.556 0.258 –1.107 

3 7 N –3.203 –1.038 –1.444 

4 6 C –2.009 –1.228 –0.983 

5 7 N –1.515 –0.094 –0.364 

6 7 N –0.351 0.114 0.341 

7 7 N 1.933 –0.059 0.151 

8 6 C 2.30 1.163 0.676 

9 7 N 3.512 1.074 1.168 

10 7 N 3.966 –0.218 0.962 

11 6 C 3.029 –0.882 0.346 

12 6 C 3.115 –2.304 –0.073 

13 7 N 1.892 –3.112 0.438 

14 7 N 4.404 –2.954 0.500 

15 7 N 3.187 –2.498 –1.608 

16 8 O 2.734 –1.583 –2.276 

17 8 O 3.663 –3.547 –1.990 

18 8 O 4.260 –3.789 1.369 

19 8 O 5.427 –2.544 –0.009 

20 8 O 1.371 –3.891 –0.337 

21 8 O 1.586 –2.869 1.591 

22 6 C –2.607 2.165 0.143 

23 7 N –4.047 2.731 0.049 

24 7 N –1.660 3.206 –0.499 

25 7 N –2.221 2.111 1.653 

26 8 O –1.664 3.090 2.108 

27 8 O –2.544 1.085 2.222 

28 8 O –2.020 4.362 –0.475 

29 8 O –0.612 2.748 –0.933 

30 8 O –4.664 2.810 1.093 

31 8 O –4.391 3.033 –1.074 

32 9 F –1.297 –2.314 –1.068 

33 1 H 1.672 2.034 0.659 

34 9 F –0.347 –0.843 1.382 

35 7 N 0.779 –0.432 –0.500 

36 9 F 0.685 0.389 –1.644 
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Appendix 7: Optimized Cartesian coordinates (in Å) of atoms in compound G 

No Atomic number Atomic type X Y Z 

1 6 C –2.576 0.297 –0.472 

2 7 N –3.557 –0.359 –1.023 

3 7 N –3.444 –1.697 –0.688 

4 6 C –2.410 –1.802 0.079 

5 7 N –1.771 –0.584 0.250 

6 7 N –0.734 –0.191 1.069 

7 7 N 0.357 –1.097 0.959 

8 7 N 1.541 –0.465 1.280 

9 6 C 1.880 0.444 2.267 

10 7 N 3.125 0.782 2.201 

11 7 N 3.679 0.057 1.159 

12 6 C 2.751 –0.678 0.619 

13 9 F –1.945 –2.895 0.611 

14 9 F 0.993 0.904 3.104 

15 6 C –2.442 1.776 –0.526 

16 7 N –1.178 2.301 –1.238 

17 7 N –3.664 2.371 –1.280 

18 7 N –2.435 2.392 0.906 

19 8 O –1.783 3.403 1.067 

20 8 O –3.115 1.787 1.714 

21 8 O –3.665 2.153 –2.473 

22 8 O –4.469 2.983 –0.607 

23 8 O –0.205 1.566 –1.173 

24 8 O –1.262 3.395 –1.753 

25 6 C 2.984 –1.647 –0.486 

26 7 N 1.873 –1.568 –1.558 

27 7 N 3.058 –3.120 –0.007 

28 7 N 4.355 –1.354 –1.169 

29 8 O 4.323 –0.877 –2.284 

30 8 O 5.313 –1.653 –0.488 

31 8 O 3.622 –3.894 –0.750 

32 8 O 2.514 –3.348 1.061 

33 8 O 1.402 –2.616 –1.957 

34 8 O 1.589 –0.433 –1.892 

35 9 F –1.230 –0.247 2.399 

36 9 F 0.169 –2.130 1.912 
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Appendix 8: Molecular energy components 

Species E ZPVE HT ΔsubH°(298) 

A –1898.72685 453.879 75.1455 191.8798 

B –1999.13126 493.014 78.5455 195.5762 

C –1997.98140 432.735 77.4948 191.3728 

D –2098.31985 466.122 81.0751 191.3377 

E –2097.23606 411.533 79.8979 191.4136 

F –2197.57926 445.445 83.3308 194.0202 

G –2296.83232 424.258 85.5844 195.0366 

Note: E is total electronic energy in atomic units, ZPVE is zero-point vibrational energy in kJ 

mol–1, HT is thermal correction to enthalpy in kJ mol–1, ΔsubH°(298) is the enthalpy of 

sublimation in kJ mol–1. 
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Appendix 9: Molecular surface properties used in equations (15), (17) and (23) 

Species υ σ2
tot A V 

A 0.1435 191.54 358.12 392.34 

B 0.1549 217.87 357.86 403.38 

C 0.1312 180.60 360.72 395.89 

D 0.1621 154.83 359.46 408.91 

E 0.1190 168.19 364.12 399.54 

F 0.1465 150.93 365.38 412.57 

G 0.1307 135.08 370.82 415.63 

Note: υ is the degree of balance between the positive and the negative potentials on a 

molecular surface (unitless), σ2
tot is an indicator of the variability of electrostatic potential in 

(kcal mol–1)2, A is the molecular surface area for the structures in Å2, V is the volume 

enclosed by the 0.001 atomic unit contour of electron density of the molecule in Å3.  
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Appendix 10: Enthalpies of formation of solid compounds, all values in kJ mol–1 

 Equation of chemical reaction ∆fH°(c, 298) 

A1 C6H2N14O12 = CO + 5CO2 + 7N2 + H2O 903.41 

A2 C6H2N14O12 = 0.5C + 5.5CO2 + 7N2 + H2O 832.66 

A3 C6H2N14O12 = 6CO + 7N2 + H2O + 2.5O2 906.11 

A4 C6H2N14O12 = 5CO + C + 7N2 + H2O + 3O2 765.16 

A5 C6H2N14O12 + 0.5O2 = 6CO2 + 7N2 + H2O 902.87 

 Average ∆fH°(A, c) 862±62 

B1 C6H3N14O12F = CO + 5CO2 + 7N2 + H2O + HF 851.01 

B2 C6H3N14O12F = 0.5C + 5.5CO2 + 7N2 + H2O + HF 784.47 

B3 C6H3N14O12F = 6CO + 7N2 + H2O + 2.5O2 +HF 853.71 

B4 C6H3N14O12F = 5CO + C + 7N2 + H2O + 3O2 +HF 712.76 

B5 C6H3N14O12F + 0.5O2 = 6CO2 + 7N2 + H2O+ HF 855.06 

 Average ∆fH°(B, c) 811±63 

C1 C6H1N14O12F = 0.5CO + 5.5CO2 + 7N2 + 0.5H2O + 0.5F2 751.47 

C2 C6H1N14O12F = 6CO2 + 7N2 + HF 755.65 

C3 C6H1N14O12F = 6CO + 7N2 + 3O2 + HF 758.89 

C4 C6H1N14O12F = 5CO + C + 7N2 + 0.5H2O + 3.25O2 + 0.5F2 609.28 

C5 C6H1N14O12F + 0.25O2 = 6CO2 + 7N2 + 0.5 H2O+ 0.5F2 742.57 

 Average ∆fH°(C, c) 724±64 

D1 C6H2N14O12F2 = 6CO2 + 7N2 + 2HF 874.25 

D2 C6H2N14O12F2 = 0.5C + 5.5CO2 + 7N2 + H2O + F2 790.93 

D3 C6H2N14O12F2 = 6CO + 7N2 + 3O2 +HF 877.49 

D4 C6H2N14O12F2 = 5CO + C + 7N2 + 3.5O2 + 2HF 736.54 

D5 C6H2N14O12F2 + 0.5O2 = 6CO2 + 7N2 + H2O+ F2 861.51 

 Average ∆fH°(D, c) 828±62 

E1 C6N14O12F2 = 6CO2 + 7N2 + F2 594.75 

E2 C6N14O12F2 = 0.5C + 5.5CO2 + 7N2 + 0.5O2 + F2 524.16 

E3 C6N14O12F2 = 6CO + 7N2 + 3O2 + F2 593.40 

E4 C6N14O12F2 = 5CO + C + 7N2 + 3.5O2 + F2 452.45 

E5 C6N14O12F2 + 0.5O2 = 6CO2 + 7N2 + F2O 589.36 

 Average ∆fH°(E, c) 551±63 

F1 C6H1N14O12F3 = 0.5CO + 5.5CO2 + 7N2 + 0.5H2O + 1.5F2 600.08 

F2 C6H1N14O12F3 = 6CO2 + 7N2 + HF + F2 694.30 

F3 C6H1N14O12F3 = 6CO + 7N2 + 3O2 + HF + F2 697.55 

F4 C6H1N14O12F3 = 5CO + C + 7N2 + 0.5H2O + 3.25O2 + 1.5F2 547.94 
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 Equation of chemical reaction ∆fH°(c, 298) 

F5 C6H1N14O12F3 + 0.25O2 = 6CO2 + 7N2 + 0.5 H2O+ 1.5F2 575.84 

 Average ∆fH°(F, c) 623±69 

G1 C6N14O12F4 = 6CO2 + 7N2 + 2F2 536.81 

G2 C6N14O12F4 = 0.5C + 5.5CO2 + 7N2 + 0.5O2 + 2F2 466.23 

G3 C6N14O12F4 = 6CO + 7N2 + 3O2 + 2F2 535.46 

G4 C6N14O12F4 = 5CO + C + 7N2 + 3.5O2 + 2F2 394.51 

G5 C6N14O12F4 + O2 = 6CO2 + 7N2 + 2F2O 526.03 

 Average ∆fH°(G, c) 492±62 
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Appendix 11: Molecular structures of the reference compounds used for energetic 

properties comparison in Table 7 
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C6H6N12O12
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a Byrd and Rice (2006), Mei et al. (2019), Zhang et al. (2019) 

b Mei et al. (2019), Zhang et al. (2019), Rice et al. (1999) 

c Jin et al. (2014) 

d Zhang et al. (2019) 

e Mei et al. (2019) 

f Politzer and Murray (2011) 
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