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Abstract objectives Differences among Mycobacterium tuberculosis complex (MTC) species may predict

drug resistance or treatment success. Thus, we optimised and deployed the genotype MTBC assay

(gMTBC) to identify MTC to the species level, and then performed comparative genotypic drug-

susceptibility testing to anti-tuberculosis drugs from direct sputum of patients with presumed

multidrug-resistant tuberculosis (MDR-TB) by the MTBDRplus/sl reference method.

methods Patients with positive Xpert� MTB/RIF (Xpert) results were consented to provide early-

morning-sputum for testing by the gMTBC and the reference MTBDRplus/sl. Chi-square or Fisher’s

exact test compared proportions. Modified Poisson regression modelled detection of MTC by gMTBC.

results Among 73 patients, 53 (73%) were male and had a mean age of 43 (95% CI; 40–45)
years. In total, 34 (47%), 36 (49%) and 38 (55%) had positive gMTBC, culture and MTBDR

respectively. Forty patients (55%) had low quantity MTC by Xpert, including 31 (78%) with a

negative culture. gMTBC was more likely to be positive in patients with chest cavity 4.18 (1.31–
13.32, P = 0.016), high-quantity MTC by Xpert 3.03 (1.35–6.82, P = 0.007) and sputum smear

positivity 1.93 (1.19–3.14, P = 0.008). The accuracy of gMTBC in detecting MTC was 95% (95%

CI; 86–98; j = 0.89) compared to MTBDRplus/sl. All M. tuberculosis/canettii identified by gMTB

were susceptible to fluoroquinolone and aminoglycosides/capreomycin.

conclusions The concordance between the gMTBC assay and MTBDRplus/sl in detecting MTC

was high but lagged behind the yield of Xpert MTB/RIF. All M. tuberculosis/canettii were susceptible

to fluoroquinolones, a core drug in MDR-TB treatment regimens.
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Introduction

Tuberculosis (TB) is a treatable disease yet is routinely

the leading cause of mortality and morbidity from a sin-

gle infectious pathogen worldwide [1]. TB in human and

animals is caused by the species of the Mycobacterium

tuberculosis complex (MTC), including M. tuberculosis,

M. africanum, M. bovis, M. caprae, M. microti, M. pin-

nipedii, M. canettii and M. mungi [2]. Previous compara-

tive genomic studies for MTC have described important

variations among species in the complex with differences

in host association, drug resistance, virulence and epitope

diversity [3]. Unfortunately, these studies are predomi-

nantly done in countries where TB burden is low but

have high capacity for genomic testing and bioinformatics

analyses [4]. This may partly limit the understanding of

the global distribution of MTC species.

Tanzania is among the top 30 countries with high bur-

den of TB in the world, accounting for 253 cases per

100 000 population incident rate, but a low rifampicin
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and/or multidrug-resistant (R/MDR)-TB burden [5]. For

instance, in 2018, an estimated 3.4% of new and 18% of

previously treated patients for drug-sensitive (DS)-TB had

R/MDR-TB globally compared to 1.1% and 3.9%

respectively in Tanzania [5]. Of the MTC species, M. tu-

berculosis is the commonest causative agent for TB in

humans globally. The M. africanum is historically pre-

dominant in West African countries like Ghana and Sene-

gal [6]. In the past 20 years, one cross-sectional study

reported M. bovis as the causative pathogen in 10% of

patients with DS-TB in Tanzania [7], but there have been

few or no further data, particularly in patients with R/

MDR-TB. Unlike most strains of M. tuberculosis, lack of

the pyrazinamidase enzyme in M. bovis leads to natural

resistance to pyrazinamide, a key sterilising anti-TB drug

for treating patients with DS- and R/MDR-TB [8]. Like-

wise, a study from West Africa showed that isoniazid

resistance due to katG S315T mutation is more frequent

in M. tuberculosis than M. africanum [6]. Furthermore,

independent of drug resistance, certain species of MTC

appear to respond more readily to anti-TB treatment than

others [9]. Even with the alarming global trend of drug-

resistant TB, it is scarcely known whether M. tuberculo-

sis, or M. bovis or M. africanum causes R/MDR-TB. This

information is not only important for tracking MTC spe-

cies circulating in the region, but also in guiding clinical

decisions in patients with R/MDR-TB.

The current molecular methods like Xpert� MTB/RIF

(Cepheid, USA) and the line probe assays (LPA, Hain

LifeScience, Germany) such as the genotype MTBDRplus

and MTBDRsl have been endorsed by the World Health

Organization (WHO) for detecting MTC and susceptibil-

ity to rifampicin, isoniazid, fluoroquinolone and second-

line injectable drugs like aminoglycosides/capreomycin

[10]. While WHO and a recent clinical trial have recom-

mended use of the MTBDRplus and MTBDRsl in detect-

ing MTC and drug resistance in direct sputum samples

collected from patients with R/MDR-TB, they do not

detect MTC to the species level [11]. The genotype

MTBC assay (gMTBC) is a commercial platform (Hain

LifeScience, Germany) that can address this gap, but it is

only validated for testing cultured MTC isolates [12,13].

Based on whether mutation(s) are present or absent in 23

rRNA, gyrB and RD1 genes, the gMTBC allows differen-

tial identification of the MTC to M. tuberculosis/

M. canettii, M. africanum, M. microti, M. bovis subsp.

bovis, M. bovis subsp. caprae and M. bovis BCG only

[14]. Similarly, PCR amplification of regions of differ-

ences (RDs), spoligotyping or targeted DNA sequencing

(i.e. gyrB and hsp65) and whole genome sequencing not

only require MTC culture, but also are expensive and lar-

gely depend upon extensive bioinformatic expertise

[4,15]. Nevertheless, MTC culture is laborious work and

it delays results for up to 8 weeks, yet is prone to con-

tamination in up to 15% of Tanzanian patients [16], and

can miss the non-culturable strains [17], and thereby

compromise patient care.

While building from the same principle of genotype

MTBDRplus and MTBDRsl [11], we optimised and

deployed the gMTBC assay to identify MTC to the spe-

cies level from direct sputum samples of patients with

presumed MDR-TB in Tanzania. We also performed

comparative susceptibility testing of MTC species identi-

fied to rifampicin and isoniazid by using the genotype

MTBDRplus, and to fluoroquinolones and second-line

injectable drugs by using the genotype MTBDRsl.

Materials and methods

Study settings

This study was conducted from September 2018 through

March 2019 at the Kibong’oto Infectious Diseases Hospi-

tal (KIDH) in Siha District, Kilimanjaro in northern Tan-

zania. KIDH is a public hospital with a bed capacity of

320. Each year, the hospital provides services to over 200

and 600 patients with drug-resistant and drug-sensitive

TB respectively. It is the National Centre of excellence

for clinical management of drug-resistant TB in the coun-

try. Patients are usually referred to KIDH if they have R/

MDR-TB with or without comorbidity like diabetes or

have confirmed pre/XDR-TB or those living far from R/

MDR-TB ambulatory centres for advanced clinical man-

agement. The hospital mycobacteriology laboratory has

capacity for testing MTC by smear microscopy for acid-

fast bacilli (AFB), Lowenstein–Jensen (LJ) solid culture

media, Xpert� MTB/RIF assay, the line probe assays

including the genotype MTBDRplus and MTBDRsl [10],

and the gMTBC kits which were added for this study.

Study design and patients

This was a cross-sectional design conducted among

patients with presumptive MDR-TB. Presumed MDR-TB

was referred to patients who presented with symptoms or

signs and risk factors suggestive of R/MDR-TB including

prior history of treatment for drug-sensitive TB and HIV

with or without rifampicin resistance [18]. The study was

approved by the National Ethics Health Review Commit-

tee at the National Institute for Medical Research

(NIMR) in Tanzania (NIMR/HQ/R.8a/Vol. IX/2662).

Permission to conduct the study was granted by KIDH

authorities. Patients were included in the study if were

aged ≥18 years old but presenting with clinical features

1058 © 2021 The Authors Tropical Medicine & International Health Published by John Wiley & Sons Ltd.
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of TB. Prior to any study procedure, they signed a writ-

ten or oral, witnessed informed consent. A copy of the

written consent is available for review by the Editor-in-

Chief of this journal on request. Moribund patients and

those unable to expectorate quality sputum were

excluded. Eligible patients provided early-morning-

sputum samples for laboratory procedures. Also, social-

demographic and clinical characteristics such as age, gen-

der, duration of sickness at enrolment, HIV status, previ-

ous history of TB treatment and working in mining, body

weight in kilograms and height in metres were collected

from patients. A chest radiograph was also taken to

ascertain the presence or absence of lung disease includ-

ing a cavitary lesion. All patients received anti-TB medi-

cations and those living with HIV received anti-retroviral

according to the 2018 treatment guidelines in Tanzania.

Sample size estimation and sampling procedure

The minimum sample size for this cross-section study

was estimated using 4% prevalence of R/MDR-TB

among patients previously treated for DS-TB in Tanzania,

with a two-sided type I error of 5%. Assuming that 90%

of patients would have agreed to participate in this study,

a minimum of 66 patients with presumed R/MDR-TB

were required. These patients were conveniently recruited

to participate in the study.

Culture, smear microscopy and Xpert� MTB/RIF assay

Each participant provided one early–morning-sputum

samples for all laboratory tests. Sputum was decontami-

nated and cultured in two Lowenstein–Jensen (LJ) slants

in according to the Clinical and Laboratory Standard

Institute [19] and previous publications [20,21]. Decon-

taminated sputum was smeared and examined for AFB

using light-emitting diode fluorescence microscopy as

instructed [22]. All procedures and results interpretations

of Xpert� MTB/RIF assay were performed as previously

described [20,23].

Line probe assays (LPA)

DNA was extracted from decontaminated sputa sedi-

ments using the GenoLyse� kit in according to manufac-

turer instructions. The DNA was stored at �20°C until

amplification, hybridisation and detection by the geno-

type MTBDRplus, MTBDRsl and gMTBC kits. Except

for gMTBC assay, a multiplex amplification with biotiny-

lated primers was performed on TC 4000 thermal cycler

as per prior studies and manufacturer instructions of the

genotype MTBDRplus and MTBDRsl assays. Unlike the

previous assay’s validation studies and manufacturer

instructions for testing clinical isolates [13], the cycling

conditions for the genotype MTBC assay were modified

to allow testing using direct sputum samples. Briefly, one

cycle at 95°C for 15 min, followed by 20 cycles at 95°C
for 30 s and 58°C for 2 min in the first stage. In the sec-

ond stage, this was followed by 30 cycles at 95°C for

25 s, 53°C for 40 s and 70°C for 40 s before a single

extension cycle at 70°C for 8min. A M. tuberculosis

H37RV DNA reference strain and sterile molecular grade

water were run together with DNA extractants, as posi-

tive and negative control for MTC respectively. As

instructed by manufacturer and a recent reported by

Ahmed et al, genotype Mycobacterium CM VER 2.0 kit

(Hain LifeScience, Nehren, Germany) was used to test

direct sputa samples and cultured isolates that had nega-

tive MTC by the MTBDRplus/sl and gMTBC [24].

Amplicons were finally held at 4°C until the DNA strip-

based hybridisation and downstream detection steps on

twin-incubator, and results were interpreted according

to manufacturer instructions and previous publication

[25]. Like in Xpert� MTB/RIF assay, LPA results are usu-

ally available between 24–48 h.

Data management and statistical analysis

A clinical report form was used to collect patient’s socio-

demographic and clinical data. Bacterial load was cate-

gorised as low (sum of low and very low MTC) if MTC

was detected at the quantification cycle (Cq) of 23 to

>28, and high (sum of high and medium MTC) if MTC

was detected at the Cq of < 23 by the Xpert� MTB/RIF

assay [23]. Chi-square or Fisher’s exact test compared

proportions. Accordingly, continuous variables were

either reported using mean and a 95% confidence inter-

val (CI) or median and their 25th and 75th interquartile

range (IQR). Sensitivity, specificity, positive and negative

predictive values and accuracy of the genotype MTBC in

detecting MTC were calculated as previous [26], using

the genotype MTBDRplus/sl, or smear microscopy and

LJ culture reference methods. An accuracy was computed

as the ratio of the total number of correct results by both

test over the total number of patients. The weighted

Cohen’s kappa (j) statistic measured the level of agree-

ment between genotype MTBC assays with other tests

[27]. Modified Poisson regression was used to model

detection of MTC by gMTBC and was adjusted against

gender, age, presence of cavitary disease, HIV status,

prior history of anti-TB exposure and working in mining

with radiological features suggestive of silicosis, smear

results for AFB and bacterial load. A 95% confidence

interval of test performance was included. A P value

© 2021 The Authors Tropical Medicine & International Health Published by John Wiley & Sons Ltd. 1059
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<0.05 was considered significant. All analyses and visuali-

sation were performed in R programming language, ver-

sion 4.0.2 (http://www.R-project.org).

Results

Socio-demographic and clinical characteristics of patients

Among 73 patients, 73% were male and had an overall

mean age of 43 (95% CI: 40–45) years. The socio-

demographics and clinical characteristics of patients are

presented in Table 1. In total, 39 (53%) had cavity on

chest radiograph. Of 39 patients with cavity, 29 (74%)

had high MTC quantity compared to 4 (12%) of 34

patients without cavity on chest radiograph (Figure 1a,

P < 0.001). Moreover, 27 (37%) were people living with

HIV/AIDS (PLWHA) and had a mean CD4 count of 244

(95% CI 184–304) cells/µl. Among PLWHA, 17 (63%)

had low MTC quantity compared to 23 (50%) of 46

patients without HIV infection (P = 0.381). Also, 43

(59%) patients had prior history of exposure to first line

anti-TB drugs compared to 30 (41%) of anti-TB naive

(P = 0.030). However, 20 (67%) of anti-TB na€ıve

patients had low MTC quantity compared to 20 (47%)

of those who had prior treatment (P = 0.084), but there

was no difference in proportion of culture positivity

between patients who had prior treatment and anti-TB

na€ıve [51% (22/43) vs. 47% (14/30), P = 0.887]. Distri-

bution of test positivity/negativity among patients with

high and low MTC detected by Xpert MTB/RIF is dis-

played in Figure 1.

Detection of MTC and non-tuberculous mycobacteria to

the species level

Among 73 patients with positive Xpert� MTB/RIF assay,

40 (55%) had low MTC quantity. Of these 73 patients,

26 (36%) and 36 (49%) had positive acid-fast bacilli

(AFB) on smear microscopy and LJ culture respectively.

Also, 38 (52%) and 34 (47%) had MTC detected by

genotype MTBDRplus/sl and gMTBC assays, respectively

(Figure 2). Overall, 33 (45%) of patient’s specimens had

positive Xpert� MTB/RIF but negative culture and no

MTC detection by genotype MTBDRplus/sl and gMTBC

assays. In total, 31 (78%) of 40 patients with low MTC

quantity had negative culture, and any of the genotype

MTBDRplus/sl and gMTBC compared to 1 (3%) of 33

patients with high MTC quantity (Figure 1d, P < 0.001).

In multivariate Poisson regression model, patients with

chest cavity, high MTC quantity and smear positive were

4.18 (1.31–13.32, P = 0.016), 3.03 (1.35–6.82,
P = 0.007) and 1.93 (1.19–3.14, P = 0.008) times more

likely to have detectable MTC from direct sputa by the

gMTBC compared to patients without chest cavity, low

MTC and smear negative (Table 2).

Of 36 patients with positive culture, 34 (94%) were

identified as MTC and further speciated to M. tuberculo-

sis/canettii by the gMTBC test on both cultured isolates

and direct sputa. Neither M. bovis nor M. africanum was

detected. The genotype MTBDRplus/sl and gMTBC

assays were negative in the remaining 2 (6%) of 36 posi-

tive cultures (Figure 2, Figure 1d) and were identified

using the genotype Mycobacterium CM VER 2.0 kit as

non-tuberculous mycobacteria with one being M. intra-

cellulare and the other one being M. kansasii.

Performance of the genotype MTBC assay in patient’s

sputum samples

Compared to genotype MTBDRplus/sl, the accuracy of

gMTBC in detecting MTC from direct sputa samples was

95% (95% CI; 86–98; Cohen’s kappa (j) = 0.89). Sensi-

tivity, specificity, positive predictive value (PPV), negative

predictive (NPV) value and accuracy of the genotype

Table 1 Socio-demographic and clinical characteristics (N = 73)

Patient’s characteristics Results

Male gender, n (%) 53 (73)

Mean age (95% CI) in years 43 (40–45)
Age groups in years
18–30 10 (14)

31–50 47 (64)

Above 50 16 (22)

Median (IQR) days of sickness to enrolment 92 (58–224)
Cough, n (%) 73 (100)

Difficulty in breathing, n (%) 53 (73)

Chest pain, n (%) 58 (79)
Fever and excessive night sweet, n (%) 54 (74)

Weight loss of 3 Kg per month, n (%) 58 (79)

Mean BMI (95% CI) in Kg/m2 18 (17–20)
Prior history of worked in mining, n (%) 27 (37)
HIV positive, n (%) 27 (37)

Mean (95% CI) CD4 count (n = 27) 244 (184–
304)

Prior history of TB treatment, n (%) 43 (59)
Had cavity on chest radiograph, n (%) 39 (53)

Low MTC detected by Xpert� MTB/RIF, n
(%)

40 (55)

BMI, body mass index; gMTBC, genotype MTBC v1.x; IQR,

Interquartile range; MTBDRplus/sl, genotype MTBDRplus or

MTBDRsl; MTC, M. tuberculosis complex.
Patients with low MTC included those who had low (5/40) and

very low (35/40) MTC at the Xpert� MT/RIF assay cycle quan-

tification (Cq) of 23–28 and >28 respectively. MTC was cate-
gorised as high (33/73) if it was detected at the Cq of <23.

1060 © 2021 The Authors Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

Tropical Medicine and International Health volume 26 no 9 pp 1057–1067 september 2021

P. Mbelele et al. Mycobacterium tuberculosis species identification from direct sputa

 13653156, 2021, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tm

i.13638 by IN
A

SP (T
anzania), W

iley O
nline L

ibrary on [17/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.R-project.org


MTBC assay in detecting MTC from direct patient’s

sputa were summarised in Table 3. There was a strong

concordance between the gMTBC assay and both LJ cul-

ture and MTBDRplus/sl (j ≥ 89%), but was moderate

when compared to smear microscopy (j = 61%,

Table 3). Except for 2 patients with non-tuberculous

mycobacteria, the gMTBC detected MTC in 33 patients

with positive culture at an accuracy of 95% (95% CI;

86–98) compared to culture (Figure 2 and Table 3).

Moreover, gMTBC detected 7 patients more than smear

microscopy (Figure 2).

Susceptibility profile of MTC to anti-TB drugs

Among 38 patients with MTC, 28 (74%) had rifampicin

resistance detected by both Xpert� MTB/RIF and geno-

type MTBDRplus assays. Eight (29%) of 28 patients with

rifampicin-resistant MTC strains had isoniazid resistance,

suggestive of MDR-TB. One patient had isoniazid resis-

tance in MTC but rifampicin was susceptible. All 38

patients were susceptible to fluoroquinolones and inject-

able aminoglycosides/peptides as shown by genotype

MTBDRsl.

Discussion

This study showed strong concordance between the geno-

type MTBC and MTBDRplus/sl as well as the LJ culture,

in detecting MTC from sputum samples of patients with

presumed R/MDR-TB. The assay achieved a ≥97% sensi-

tivity compared to LJ culture and genotype MTBDRplus/

sl which is higher than 93% sensitivity reported by

Somoskovi et al., from patients with culture and smear-

positive sputa [13]. Molecular methods including the

gMTBC and sequencing technologies have been optimised

for testing high burden samples such as cultured isolates
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Figure 1 Distribution of bacterial load measured by Xpert� MTB/RIF among patients with chest cavity and HIV and test positivity/

negativity. Bacterial load was quantified as low and high at the Xpert� MTB/RIF quantification cycle of 23 to >28, and <23, respec-
tively. Patients were tested using culture and line probe assay (LPA) including the genotype MTBC (gMTBC) and genotype

MTBDRplus/sl (MTBDR).
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[13,25]. Despite that the genotype MTBDRplus and

MTBDRsl assays have recently been tested on unpro-

cessed sputa [11], this is to our knowledge the first report

to compare the performance with the gMTBC.

Patients with cavitary disease had high MTC com-

pared to those without chest cavity. Presence of cavity

can also result in an local environment of high bacterial

replication within the cavity which can later distribute

into the airway, consistent with a higher sputum bacte-

rial burden [28,29]. Patients with chest cavity, HIV neg-

ative, smear positive, and high bacterial load measured

by Xpert� MTB/RIF harboured detectable MTC from

direct sputa by the gMTBC compared to patients with-

out chest cavity, low MTC and smear negative. Sensitiv-

ity improves in people with conditions of known higher

bacterial burden and expectedly decreases in paucibacil-

lary conditions particularly in patients with atypical fea-

tures of TB on chest radiograph [30,31]. Moreover, the

high yield of gMTBC compared to smear microscopy

supports its use during screening of participants in clini-

cal trials [11].

Surprisingly in this study, approximately 45% of

patients with a positive Xpert�MTB/RIF result for MTC

had a negative LPA and LJ culture, as compared to only

20% from other studies [32]. Under expected circum-

stances, culture should be more sensitive than Xpert�

MTB/RIF assay and LPA [33]. A similar discordance was

recently reported in a clinical trial in which 34% of pau-

cibacillary samples re-tested negative for active TB by

Xpert� MTB/RIF assay [34,35]. Similar to our findings, a

paucibacillary state was among the potential sources of

discrepancy [34,35]. Despite the similar culture positivity

rate between patients with prior history of treatment with

first-line anti-TB drugs and those who were anti-TB drug

na€ıve, approximately half of those with prior treatment

had low detectable MTC by Xpert� MTB/RIF assay,

which may have represented a false-positive signal [31].

Moreover, in patients with prior history of TB treatment,

detecting low level of MTC DNA by Xpert� MTB/RIF or

the more sensitive Xpert� MTB/RIF Ultra may represent

a subpopulation without active infection but rather

chronic lung disease, and residual cavitary changes and/

or bronchiectasis [36,37]. In such patients, the differential

diagnosis should also include non-tuberculous mycobacte-

ria and fungal pathogens such as Aspergillus species that

are known to colonise those with residual lung disease

following otherwise successful TB treatment [37,38]. We

and others have reported on the importance of accurately

detecting non-tuberculous mycobacteria such as M. intra-

cellulare and M. kansasii among people living with HIV/

AIDS in Tanzania for whom multiple rounds of TB treat-

ment were performed before alternative diagnoses and

post-TB chronic lung disease were considered [39,40]. To

enhance more accurate TB diagnosis, our findings

98 Screened positive for
MTC by Xpert®MTB/RIF

73 enrolled

gMTBCMTBDRTB cultureTB Microscopy

25 excluded
• 10 On MDR-TB regimens
• 9 unable to produce sputa
• 6 didn’t consent

25 (34%) 39(53%)34 (46%)35 (48%)38 (52%)37 (51%)36 (49%)48 (66%)

+ - + - + -+ -

All 34 MTC were
M. tubercuclosis/canettii

34 (94%) were
MTC

2 (6%) were
NTM

Figure 2 Detection of M. tuberculosis complex (MTC) from patients presumed for multidrug-resistant (MDR)-TB. MTC are the cau-

sative agents for tuberculosis (TB), and were identified using the line probe assays including the genotype MTBC (gMTBC), and any of

the genotype MTBDRplus or MTBDRsl assays (MTBDR), and were further speciated to M. tuberculosis/canettii by gMTBC. Non-
tuberculous mycobacteria (NTM) were identified to M. intracellulare and M. kansansii by using the genotype Mycobacterium CM

VER 2.0 kit.
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warrant consideration of modifying the current Xpert�

MTB/RIF testing algorithm to include an assessment of

active/replicating bacillary load with tools such as the

Molecular Bacterial Load assay, which detects and quan-

tifies the rRNA of viable M. tuberculosis within 24 h, as

well as other conventional techniques such as culturing

the M. tuberculosis in liquid and solid media for those

with prior TB treatment, and expanding access to non-

sputum assays such as urine TB-LAM for people living

with HIV/AIDS, and suspicion of concomitant extrapul-

monary TB [41–43]. In doing so, patients with active TB

can be treated with anti-TB drugs, while those with non-

tuberculous mycobacteria or other manifestations of

post-TB lung disease can be effectively triaged for chronic

lung disease pharmacotherapy and pulmonary rehabilita-

tion [44]. These approaches support recent observations

such as those by Costantini et al (2020) who reported a

favourable outcome after withholding anti-TB medication

in a patient with positive Xpert� MTB/RIF but negative

culture results [45].

The M. tuberculosis/canettii was the only member of

MTC identified as the pathogen among patients with pre-

sumptive MDR-TB. Because of the close genetic related-

ness, the gMTBC assay cannot fully differentiate

M. tuberculosis from M. canettii, even with the recent

894 diverse genomes of M. canettii and major phyloge-

netic groups of MTC that were typed to guide the new

revised interpretation of the assay’s result [46]. The

M. tuberculosis/cannetii predominance in this study is

similar to a prevalence survey in sub-Sahara Africa, that

at least 95% of TB was due to M. tuberculosis and 2%

due to M. africanum [25]. Our findings confirm prior epi-

demiological studies that had suggested the geographic

distribution of M. africanum shows it to be an important

cause of TB in West Africa, but that it is rarely detected

in East African countries, including Tanzania [47]. In

Table 2 Modified Poisson regression modelling of MTC detection by gMTBC (N = 73)

Variable

Univariate Multivariate

Crude incident rate ratio (95% CI) P value Adjusted incident rate ratio (95% CI) P value

Gender

Female Ref: Ref:

Male 0.79 (0.38–1.61) 0.518 1.10 (0.66–1.82) 0.725

Age group in years
18–30 Ref: Ref:

31–50 0.61 (0.35–1.08) 0.093 1.58 (1.11–2.27) 0.012

Above 50 0.96 (0.49–1.88) 0.899 0.49 (0.31–0.78) 0.003
HIV status

Negative Ref: Ref:

Positive 0.93 (0.46–1.88) 0.838 0.53 (0.36–0.79) 0.002

Cigarette smoking
Non-smokers Ref: Ref:

Smokers 1.04 (0.53–2.03) 0.918 0.81 (0.55–1.19) 0.283

Chest cavity

Absent Ref: Ref:
Present 9.52 (2.91–31.13) <0.001 4.18 (1.31–13.32) 0.016

MTC quantity

Low Ref: Ref:
High 7.03 (2.72–18.16) <0.001 3.03 (1.35–6.82) 0.007

Chest silicosis

Absent Ref: Ref:

Present 1.05 (0.53–2.11) 0.88 0.96 (0.63–1.47) 0.863
Prior TB treatment

New Ref: Ref:

Retreatment 1.13 (0.56–2.25) 0.735 0.84 (0.61–1.17) 0.231

Smear microscopy
Negative Ref: Ref:

Positive 3.78 (1.84–7.75) <0.001 1.93 (1.19–3.14) 0.008

gMTBC, genotyope MTBC ver 1.x; HIV, human immunodeficiency virus; MTC, M. tuberculosis complex measured by Xpert� MTB/

RIF; TB, tuberculosis.
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these settings, this species dominance underscores the

treatment, prevention and control strategies for M. tuber-

culosis.

Isoniazid resistance in patients with rifampicin resistant

was uncommon, accounting for about 29% compared to

over 64% in South Africa [48] and 78% in China [49].

In the present study, isoniazid monoresistance was cate-

gorised from direct sputum samples which was negative

in a large number of patients [30], as compared to MTC

isolates in two studies [48,49]. However, this is contrary

to a global genomic analysis of over 5000 M. tuberculo-

sis strains by Manson et al., who documented that muta-

tions conferring resistance to isoniazid evolve first before

rifampicin resistance across all lineages, geographic

regions and time periods [50], and therefore our findings

likely represent the incomplete coverage of isoniazid resis-

tance targets on the genotype MTBDRplus assay [51].

We were not able to perform conventional culture-based

isoniazid susceptibility testing to interrogate this observa-

tion. Favourably in the present study, all M. tuberculo-

sis/canettii identified were susceptible to fluoroquinolone

and aminoglycosides/capreomycin, similar to findings by

Mpagama et al., among patients with MDR-TB in Tanza-

nia [52] and in studies from Kenya [53]. Our findings

continue to support the empirical use of fluoroquinolones

in the treatment of R/MDR-TB in Tanzania while await-

ing treatment modification from culture-based susceptibil-

ity testing.

This study has limitations. The relatively small sample

size does not allow for generalisability beyond the refer-

ral patterns to the hospital of study, but do provide a

confirmatory snapshot of circulating MTC species in

patients with MDR-TB in Tanzania to inform further the

current approach to optimal diagnosis and clinical man-

agement. However, the main comparison was made in

the performance characteristics in gMTBC from unpro-

cessed sputa that did not require a diversity of samples.

Furthermore, we included patients with previous history

of treatment or those with rifampicin-resistant TB rather

than anti-TB na€ıve, which could have contributed to dis-

crepancies among tests as previously outlined [54].

Nonetheless, these patients represent an important popu-

lation at risk for acquiring drug resistance or other circu-

lating strains given their exposure to the healthcare

setting and as evidenced by our findings of non-

tuberculous mycobacteria.

In conclusion, the concordance between the gMTBC

and MTBDRplus/sl in detecting MTC from direct sputum

was considerably high but lagged behind the yield of

Xpert MTB/RIF. High bacterial loads such as those

found in patients with chest cavity and sputum smear

positive were independent predictors of MTC detection.

Modification by integrating biomarkers for active TB,

such as the TB molecular bacterial load assay, urine

LAM and selective use of mycobacterial culture for non-

tuberculous mycobacteria into Xpert� MTB/RIF testing

algorithm for those with prior TB treatment can be piv-

otal not only in addressing potentially false-positive

Xpert� MTB/RIF results, but also in differentiating active

TB from the sequelae of post-TB lung disease. Impor-

tantly, all M. tuberculosis/canettii detected were suscepti-

ble to fluoroquinolones, a core drug in MDR-TB

treatment regimens.
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