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Abstract: Rainwater is conventionally perceived as an alternative drinking water source, mostly
needed to meet water demand under particular circumstances, including under semi-arid conditions
and on small islands. More recently, rainwater has been identified as a potential source of clean
drinking water in cases where groundwater sources contain high concentrations of toxic geogenic
contaminants. Specifically, this approach motivated the introduction of the Kilimanjaro Concept
(KC) to supply fluoride-free water to the population of the East African Rift Valley (EARV). Clean
harvested rainwater can either be used directly as a source of drinking water or blended with polluted
natural water to meet drinking water guidelines. Current efforts towards the implementation of the
KC in the EARV are demonstrating that harvesting rainwater is a potential universal solution to cover
ever-increasing water demands while limiting adverse environmental impacts such as groundwater
depletion and flooding. Indeed, all surface and subsurface water resources are replenished by
precipitation (dew, hail, rain, and snow), with rainfall being the main source and major component of
the hydrological cycle. Thus, rainwater harvesting systems entailing carefully harvesting, storing,
and transporting rainwater are suitable solutions for water supply as long as rain falls on earth.
Besides its direct use, rainwater can be infiltrating into the subsurface when and where it falls, thereby
increasing aquifer recharge while minimizing soil erosion and limiting floods. The present paper
presents an extension of the original KC by incorporating Chinese experience to demonstrate the
universal applicability of the KC for water management, including the provision of clean water for
decentralized communities.

Keywords: drinking water; rainwater harvesting; recharge pits; recharge ponds; stormwater management

1. Introduction

Climate change, population growth, and rapid industrialization are regarded as the three main
global drivers increasing stresses on safe drinking water supply worldwide [1-13]. Drinking water
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supply has two main challenging aspects: water quantity and water quality. These two aspects
have shaped the current paradigm of water management, including drinking water supply since the
1850s [2,14,15]. For any considered population (e.g., rural or urban communities), there are three
predominant scenarios pertaining to drinking water provision: (i) clean water sources are locally
available to quantitatively cover the needs, (ii) available water is polluted and should be treated
(including blended) before supply, and (iii) drinking water is introduced from distant locations
(e.g. bottled, piped or tanked water). As a result, there is a 170-year-expertise on drinking water
provision including; treatment, storage, conservation and transportation over long distances. In these
efforts, rainwater (RW) has been used only in some specific situations as it was considered that storing it
for dry periods would be challenging [16]. However, especially for drinking water purposes, packaging
rainwater can be regarded as an efficient storing tool [12].

The three main water sources are [9,16,17]: (i) groundwater (e.g., springs, wells), (ii) rainwater
(e.g., dew, hail, rain, and snow), and (iii) surface water (e.g., a lake, ocean, pond, river, stream).
A rule of thumb on water quality is that surface water is polluted by pathogenic microbes (first
killer), while groundwater is mostly free from pathogens, but is only occasionally polluted by some
inorganic chemicals of which arsenic, fluoride, and uranium are the three most widespread toxic
geogenic contaminants (the three other killers). On the contrary, rainwater is usually free from geogenic
chemicals while the extent of anthropogenic contamination can be regarded as low or even very
low. Like surface water, rainwater will be contaminated by pathogens if it is not well-protected (e.g.,
packaging). The Kilimanjaro Concept (KC), is a recent concept developed to address the human
health risks associated with high concentrations of fluoride in groundwater in the East African Rift
Valley [18-20].

In summary, the original KC entails harvesting rainwater from pristine hilly areas (e.g., Kilimanjaro
mountains) and storing it for drinking water supply. Depending on the quality of the rainwater,
it can either be supplied directly without treatment or subjected to low-cost treatment in cases
of contamination. In some cases, the rainwater can also be blended with groundwater to dilute
contaminants to concentrations within the guideline limits for drinking water. A vital premise of the
Kilimanjaro Concept is that rainwater is either free of both pathogens and chemical contaminants,
or where pathogens and anthropogenic contaminants exceeding drinking water guidelines occur in
harvested RW, they can be removed by simple, affordable and efficient methods like metallic iron (Fe®)
amended slow sand filters (Fe? SSF). In other words, RW is a relatively clean source of water that can
be easily and locally made safe for drinking.

Moreover, packaging rainwater during the rainy season is an under-utilized tool to store drinking
water to cater for dry periods. The KC was initially developed to address the problem of high fluoride
in groundwater in Tanzania. However, due to its flexibility and adaptability, scope exists to extend it to
other countries in Africa and elsewhere with similar problems. In this regard, the KC can be adapted
to regions in Asia and South America, where high concentrations of geogenic contaminants (e.g., As, F,
U) in drinking water pose severe human health risks [21].

The presentation until now recalls that RW is an excellent source of drinking water. However,
this relatively abundant and readily available water source has initially been neglected because of
the expected massive demand in storing capacity [1,16,17]. The Water Vision 2025 [22] shows that
the low water utilization and under-development in Africa are not due to lack of water resources,
but instead, lack of financing and technology to develop the water resources. This is evidenced
by low water withdrawals for significant water uses for agriculture, community water supply, and
industry, which account for just 0.7% and 3.8% of rainfall and internal renewable water resources,
respectively. Technical advances during the past two centuries coupled with recent research for
improved access to safe drinking water in low-income communities (decentralized systems) and
efforts to rapidly transport urban runoff away from cities to prevent flooding suggest that harvested
RW has the potential to provide the highest drinking water quality to a larger population [12,23-25].
Moreover, in addition to using it as a direct source of drinking water, the harvested rainwater can
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be locally infiltrating into the sub-surface in the form of artificial recharge to increase groundwater
storage in aquifers [7,26-28]. Locally infiltrating rainwater prevents salt intrusion in coastal areas,
and deeper groundwater drawdown and depletion, which are the most widely reported adverse
impacts of excessive groundwater abstraction [9,28,29]. Additionally, compared to surface runoff in
rivers and streams, locally infiltrated rainwater is less likely to come in contact with agriculture and
industry-related pollution, mainly where agricultural and industrial wastewaters are not treated before
discharge into the environment [30-33].

Insummary, proper rainwater management includes: (i) storing and eventually conserving/treating
RW for potable and non-potable purposes, and (ii) infiltrating the rainwater to enhance groundwater
recharge. Properly infiltrating rainwater is a powerful tool to alleviate soil erosion and decrease the
severity of flooding events. In non-inhabited areas, rainwater management (e.g., harvesting, infiltration,
and storage) can also be universally adopted as a counter-measure against climate change. In the
developed world, there are highly integrated water management systems encompassing millions
of kilometers of pipes to achieve the following: (i) deliver drinking water to users at homes or in
the industry, and (ii) transport wastewater away from human settlements to wastewater treatment
plants [2,14,15,24,25,34-36]. The present communication presents a modification of this infrastructure
to cope with changing anthropogenic pollution inputs and impacts of climate change on global water
supply. A key advantage of this approach is a limited energy requirement for water treatment associated
with conventional technologies.

2. Overview of Rainwater Harvesting Systems

2.1. The Status of Rainwater Harvesting Systems

In the late 1880s, Parkes [16] summarized the value of rainwater as a source of supply as follows:
(i) its general good quality and great aeration make it both healthy and pleasant, (ii) the greatest
benefits occur when rainwater is used for drinking water supply instead of spring or well water, which
is often largely impregnated with salts, and (iii) in cases of cholera, rainwater is less likely to become
contaminated with sewage than wells or springs. This aptly shows that, 132 years ago, the suitability of
RW for drinking purposes was recognized. The main problem was how to store the amount necessary
to supply a community for months. The idea herein is to store for later use, and also infiltrate to
minimize flooding and erosion while promoting groundwater recharge.

2.2. The History of Storage Capacity or Rainwater Reservoirs

The use of rainwater storage systems is not a new concept. In ancient times, it was customary to
state the capacity of rainwater reservoirs in days’ consumption [17]. Many semi-empirical relations are
available for this purpose. For instance, if a reservoir is designed with a 100 days’ capacity, it holds
enough water to cover the water demand of a community for 100 days, at a mean rate of consumption
without any additional water source [17]. As an example, the following empirical formula by Thomas
Hawksley was largely used for determining the reservoir capacity (C) when the mean rainfall is known:

C = 100/(r)? 1)

where r = average rainwater through three consecutive dry years. Although the rationale for this
formula is not addressed herein, it is essential to note that some 120 years ago, engineers have
satisfactorily sized water reservoirs of capacity of up to 250 days’ supply. More importantly, RW for a
whole year water supply (250 days = 8 months) was already commonplace [16,17]. Today, more simple
approaches to estimate the capacity of RWH reservoirs are available, depending on the intended uses
of the harvested water [19,23,37]. It is evident that the total capacity needed herein may be higher,
as water is harvested also to be artificially infiltrated. Appropriate temporary storage before subsequent
infiltration is critical to avoid contamination of rainwater. The storage capacity does not only depend
on direct uses in households nor on the irregularity of rainfall, but on the target amount of water to
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be harvested for immediate direct use and infiltration into groundwater systems for subsequent use
during the dry season [28,30]. This approach would be an apparent attempt to realize an old vision of
King Parakramabahu of Sri Lanka (12th century), who stated that, “Let no drop of water flow to the
sea unused by man” [4]. The next section gives an overview of the status of RWH in Kenya with a
particular focus on the design of the African Water Bank which is regarded as proof that the KC is
immediately applicable.

2.3. Kenyan Progress in RWH

The practice of rainwater harvesting (RWH) is an under-utilized tool for water management [3,18,19].
In the East African Rift Valley and Kenya in particular, RWH is mainly used for drinking water and
agricultural needs [23,38]. It has been recognized that RWH reduces stormwater runoff, decreases watershed
pollution, and improves water management in an affordable manner [23,28,30,38—42]. Harvested rainwater
is currently utilized for: (i) drinking water supply, (ii) domestic non-potable uses such as toilet flushing and
clothes washing, and (iii) landscape irrigation and agricultural crop irrigation [43,44]. The current trend is
to improve rainwater harvesting strategies [23,38,40-42,44].

Kenya is a very water-stressed country, as two-thirds of the land is arid or semi-arid [23,42].
The quest for a sustainable solution to water scarcity has driven significant innovations in RWH [23,42,45].
The potential of RWH to alleviate water shortages has been assessed using scientific tools [42,45]. Recently,
the African Water Bank (AWB), an international non-governmental organization (NGO), has committed to
harvest and store rainwater on a large scale. In this regard, the collection area is enhanced; the guttering
system and storage systems are increased, filters, water gauges, and first flush devices are optimized [23].

A typical AWB rainwater harvesting system collects 400 to 450 m® of rainwater within some
three hours of steady rain. The collection area is an artificial roof of 900 to 1600 m?. Storage tanks of
various capacities are designed and constructed. The largest tank ever constructed in Narok County
has a capacity of 600 m® and can be expanded [23]. Calculations showed that 600 m? of water could
serve a community of 400 people for approximately two years (24 months) without any extra rain.
The capacity can be increased at a rate of 220 m? per year. The AWB rainwater harvesting system is
affordable and easy to maintain locally in a self-reliant manner. It also uses local skills, labor, materials,
and technology [23]. This corresponds to the vision of the Kilimanjaro Concept [18-20], which is now
to be extended to incorporate Chinese experience, mainly for distant water transfer. A key advantage
of the KC is that urban slums and rural areas are served as well.

It should be anticipated that, in the extension of the Kilimanjaro Concept, RWH tanks and
infiltration ponds for individual households will be sized depending on their needs and the volume of
water falling (to infiltrate). More importantly, community storage tanks should be designed to ensure
that “no drop of water flow to the sea unused by man” [4]. That is, they should be large enough to
contain excess rainwater from individual compounds.

3. The extended Kilimanjaro Concept

3.1. Overview of the Kilimanjaro Concept

The Kilimanjaro Concept advocates for the creation of a regional network to harvest, store and
subsequently use rainwater from rooftops and other clean surfaces such as non-inhabited mountainous
areas (i.e., catchments) for safe drinking water supply. This choice is motivated by the well-documented
quality of rainwater and the relative ease to technically remove its typical contaminants using affordable,
applicable and efficient chemical-free technologies [18,19]. Typical contaminants occurring in rainwater,
and the factors influencing rainwater quality are discussed in detail in earlier papers [46,47]. In summary,
depending on roof materials, land use, climatic factors and storage conditions, rainwater may contain
contaminants such as trace metals, pathogenic organisms, and physical objects (e.g., leaves, bird and
animal droppings) [31,32,46—48]. Thus preliminary analysis and subsequent treatment using low-cost
methods may need to be considered on a case-by-case basis. Recently, some studies have investigated
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the following: (i) surface treatments for enhancing rainwater harvesting [30], (ii) site selection for
rainwater harvesting and subsequent storage systems [32], and (iii) the effects of climate change
and variability on urban rainwater harvesting systems [33]. These recent studies provide critical
information for the implementation of the Kilimanjaro Concept. The extended Kilimanjaro Concept,
presented herein, adds the following components: (i) the collection of stormwater for non-potable uses,
(ii) the local creation of infiltration ponds for artificial recharge of the groundwater systems, and (iii)
based on Chinese experience, the long-distance conveyance of water from rural areas to serve urban
populations in demand. This approach will help individual communities to become self-reliant in
water supply or at least reduces dependence on imported water or/and groundwater withdrawals.
Moreover, by installing groundwater recharge ponds at a local level, groundwater recharge is increased
while flood control is improved. Additionally, some communities will occasionally export excess
rainwater to nearby communities in need.

The Kilimanjaro Concept is not primarily a tool to serve water-scarce communities, but rather an
approach to potentially achieve the following: (i) for long-term environmental conservation (alleviating
erosion), and (ii) mitigate the impacts of droughts and floods under climate change conditions [49].
Accordingly, the concept extends beyond avoiding desalination or diversifying water supply sources,
but seeks to harness a still neglected natural resource, and regards rainwater and stormwater in an old
perspective [4,14,16,50-52]. In fact, this perspective has historically preceded centralized water supply
systems, which often exclude highly dispersed and vulnerable communities in most low-income
countries [14].

Indeed, several opportunities have been realized in water harvesting, with roads and grazing
areas being considered as potential water harvesting catchments. The traditional perception is that
roads once constructed would change the surface hydrology and impacts on runoff, often causing
local flooding, waterlogging and erosion. However, work by Steenbergen [53] on Ethiopian roads has
recommended that this can be turned in the enormous potential for water harvesting and management.
Also, Grum et al. [54] have reported that it is possible to harvest the concentrated water on roads
for multiple purposes including groundwater recharge, soil moisture replenishment and storage for
domestic and animal uses in dry periods. The runoff water can be harvested from culverts, side drains
and depressions into converted borrow pits, infiltration ponds, and swallows, while in some cases
water can be spread from the road surface and gullies plugged to enhance recharge [55,56]. Such water
can be used to support livelihood activities such as household food and livestock production, an aspect
constituting an extension of the KC beyond drinking water. In this regard, the KC is an opportunity
for improving integrated water resources management, including safe drinking water supply and
managed aquifer recharge (MAR) [25,26,50,51,56,57], and provision of water for household food and
nutritional security. The concept is not only for low-income communities or semi-arid areas but is
generic, thus can be extended to other environmental settings whether they face limited clean water
supply or not.

3.2. Ideal Rainwater Catchments for the Kilimanjaro Concept

Catchment characteristics, including area, and nature of materials and potential for contamination
are critical in the KC. The following catchments may be ideal for the KC:

(i) Water from mountain (seasonal) streams flowing over clear, stony uncontaminated surfaces
without either cultivation, pastoral activities or habitations on the sides, should be chemically
analyzed for hardness and separately stored,

(ii) Runoff water flowing over an uncultivated surface and a non-inhabited hill or mountain should
be chemical analyzed and separately stored,

(iii) Rooftop rainwater should be collected and stored separately to be mainly used for drinking
water purposes,

(iv) Road runoff water could serve as water sources for agricultural practices, but its quality will need
to be monitored for chemical parameters.
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3.3. Upland Surface and Groundwater Sources

Clean water from groundwater sources (e.g., springs) and surface water (streams, runoff, rivers)
from pristine areas can also be harvested to supplement rainwater and stormwater. All mountain
water is of this nature, and so is the water of such valleys as their steep slopes do not often allow
cultivation or development of human settlements. Moreover, all water from entirely uninhabited tracts
of land such as natural woodlands may also be considered under this category. Such water is a very
common source of drinking water supply, and includes mountain streams originating from high land
(e.g., the Kilimanjaro Mountains). The water of this class is sometimes very potable, although the
quality varies considerably among areas. In some cases, ‘peatiness’, characterized by a brown color, is a
property of water from many mountainous and moorland areas. However, compared to pathogenic
and toxic geogenic contaminants, such peatiness, when occurring to a moderate extent, does not often
pose human health risks.

3.4. Lessons from China

The East African Rift Valley and portions of China have in common high fluoride concentrations in
groundwater sources, a feature that has shaped the authorship of the present communication. The first
two peer-reviewed communications presenting the Kilimanjaro Concept have clearly stated that people
should be ready to accept long-distance water piping systems [18,19]. The premise of this section is
that the expertise for long-distance water transport is mostly available in China [6,8,29,58-60], and
could just be adapted to the needs of the EARV regions. On the other hand, China can base its drinking
water supply in fluoride-polluted areas on the KC and use the extended KC for groundwater recharge
in the whole country. Currently, Chinese rural areas with fluoride-polluted water sources rely on the
use of specific engineered adsorbents for water treatment [6,8,61,62]. Such treatment methods have
inherently low fluoride removal efficiency and are comparatively expensive [18,19,63]. Therefore,
the KC developed initially for EARV can be extended by drawing lessons from water supply systems
in China. It should be explicitly stated that this communication is not reporting on the state-of-the-art
water supply in China. There are excellent review articles on various aspects [29,59,61]. The focus is
on aspects that can facilitate the implementation of the KC, mainly: (i) long-distance water transfer
and (ii) water quality management.

3.4.1. Routinely Controlling Water Quality

In China, rural water supplies are supervised by the Ministry of Water Resources, while urban
water supplies are supervised by the Ministry of Housing and Urban-Rural Construction. The National
Health Committee routinely inspects the water quality both in rural and urban areas [8]. In the EARV
regions and sub-Saharan-Africa (SSA) in general, although standards exist, accredited laboratories
to monitor the quality of drinking water are very limited [64,65]. Monitoring water quality is the
cornerstone for safe drinking water provision [64—68]. In this regard, communities in SSA including
the EARV can learn lessons on drinking water quality monitoring and system maintenance from their
Chinese counterparts.

3.4.2. Integrating Urban and Rural Water Supplies

China has widely solved water supply shortages in rural areas near cities/towns by an integrated
urban-rural water supply [8]. In this approach, urban water supply systems are expanded to rural areas
by pipe networks [69,70]. Provinces such as Guangdong, Jiangsu and Jiangxi have largely used this
approach to supply rural residents [8,69,70]. For example, Peng and Ye [69] reported on a pipe network
extended over 1683.04 km and supplying 22 villages with a total population of 315,900 inhabitants in
the countryside area surrounding the city of Ezhou. A total of eleven (11) waterworks secure water
supply in the named rural areas.
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The main concern with the urban-rural water supply approach is water quality stability in the
distribution systems [8]. Due to the long distance to rural consumers, the water retention time in
pipelines is long. The comparatively lower water consumption in rural areas is also a design concern in
particular concerning the low residual disinfectant doses, and water quality deterioration arising from
bacteria regrowth and corrosion of piping material. However, the cases drawn from China demonstrate
that long-distance transport of water between urban and rural communities is feasible. However,
whereas in China water is transported from urban to rural areas, the Kilimanjaro Concept basically
reverses the trend by “exporting” excess rural water to cities where there is often high demand, thus,
inherently solving this problem. For low-income communities, the extended Kilimanjaro Concept
should strive for a disinfectant-free water supply. This is because, chlorination, which is widely
recommended by the WHO is not really affordable, and reacts with organic matter in water to form
trihalomethanes, which are carcinogenic [71,72]. In cases, where contamination of rainwater with
pathogenic microbes is expected or suspected, stored water can be intermittently heated (e.g., once per
week) to about 80 degrees and kept for some 10 minutes at this temperature (pasteurization). In such
cases, intelligent heating systems can also be considered for this purpose, using solar energy or wood
from short growth cycle plant species with good calorific properties. To avoid excessive costs, such
pasteurization should only be applied at local treatment plants to a fraction of the stored rainwater
ready for supply. At individual rural households, solar disinfection (SODIS) of quantities sufficient for
drinking consumption can be promoted, with better models of SODIS established.

3.5. Universalizing the KC: The Role of Water Storage Systems

Although the KC was originally developed for Kilimanjaro in Africa, this communication argues
that the elements of the concept can be adapted to various settings (i.e., universalizing the KC). In this
regard, the components of the KC can be modified or improved to provide clean drinking water under
diverse socio-economic and biophysical conditions. The KC entails harvesting rainwater compound
per compound, village per village, and hill per hill. Designing water harvesting systems ensures
that excess water from each compound would flow directly to the next local storage station, which
may include a low-cost water treatment system. In this regard, water storage systems are a critical
component of the KC since they provide a buffer against the high temporal variability associated
with rainwater and stormwater availability. Depending on location conditions, both surface and
underground storage systems can be used. In the context of the KC, rainwater or stormwater can also
be harvested and stored in individual surface storage systems (Figure 1) or a cascade of inter-connected
groundwater storage reservoirs (Figure 2), which then supply water to a water treatment and storage
facility. In mountainous areas, such as the Kilimanjaro Mountains, such storage systems can be located
in hilly areas upstream of the water treatment and storage systems and communities to facilitate
low-cost water conveyance by gravity. Overall, the Kilimanjaro Concept advocates for the storage,
protection (from contaminant, light, and oxygen) and redistribution of readily available water, but
mostly rainwater.

Depending on local conditions, a number of groundwater storage systems are envisaged. First,
in cases where the risk of contamination by geogenic and anthropogenic pollutants is minimal,
the harvested rainwater can be stored in natural aquifers, which will act as de facto groundwater
storage systems for drinking water provision. Such systems will be analogous to artificial groundwater
recharge, which is meant to replenish groundwater resources [28]. Second, contaminated stormwater
can be passed through natural aquifers to achieve partial removal of contaminants in stormwater. This
process, often known as soil aquifer treatment (SAT), has been used to treat wastewater before its
subsequent injection into groundwater systems and use for irrigation. Depending on the quality of the
groundwater from the SAT systems, such water can be used for non-potable purposes or subjected to
low-cost treatment and used to supplement clean rainwater. Compared to surface storage systems,
properly designed and sited underground natural aquifer systems may also have other advantages,
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including: (i) reducing the cost associated with artificial storage systems, (ii) reduces water loss via
evaporation, and (iii) less prone to contamination by pollutants in surface runoff.

Overflow vent to divert
excess water to next storage

impermeable layer

Overflow vent to divert
excess water to next storage

Figure 1. A conceptual depiction of a groundwater system for the collection and storage of
rainwater/stormwater.

rainfall runoff

smaller tank to
sedimentation basin

excess water overflow
water storage tank

gravity flow
to house
¥

Figure 2. A cascade of an inter-connected system for the storage of harvested rainwater/stormwater.

The harvesting and storage of both rainwater and stormwater enable the subsequent conjunctive
use of both water resources. On the one hand, subject to its quality, clean rainwater can be used for
drinking water provision in its raw state or after affordable treatment [72-75]. On the other hand,
stormwater, which is likely to be contaminated by anthropogenic pollutants, can be used for livestock
watering and irrigation of household nutritional and herbal gardens [76]. Livestock, and household
nutritional and herbal gardens play a critical role in food, income, and nutritional security in Africa
and other developing countries. In this regard, the KC provides scope to address the water-food
nexus in Africa and other developing countries. The water-food nexus entails that water and food
problems in most developing countries, including those in Africa co-exist, thus are better addressed
simultaneously. In fact, the capacity of stormwater harvesting systems with storage components to
mitigate the adverse effects of droughts and mid-season dry spells caused by climate change and
variability in agro-ecosystems is well-documented in Africa. Here, the KC proposes that such systems
can be extended to clean water provision for drinking purposes. Lessons drawn from China indicate
that the harvested rainwater can be transported from areas with excess water to those in need, an aspect
which is currently overlooked in drinking water provision in Africa.

3.6. The Kilimanjaro Concept Versus Borehole-Based Drinking Water Supplies

In developing countries, low-income households lack access to centralized drinking water supplies,
which are often unreliable and expensive. In such cases, communities often rely on surface water
sources or shallow groundwater wells, which are prone to anthropogenic pollution. In most informal
settlements in urban and peri-urban areas, such drinking water sources are often in close proximity
with on-site sanitation systems such as pit latrines and septic tanks. The current approach to clean
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water provision in such settings is to drill deep boreholes because groundwater from such boreholes is
considered less prone to anthropogenic pollution. However, in the case of the East African Rift Valley
System and other regions in Asia and South America, such groundwater contains high concentrations
of toxic geogenic contaminants (As, F, U). In such instances, attempts to provide drinking water to such
communities by drilling boreholes expose communities to serious health risks [77]. In fact, it is such
settings that motivated the Kilimanjaro Concept. Table 1 presents a comparative summary highlighting
the novelty and potential benefits of the Kilimanjaro Concept versus the traditional approach to
drinking water provision based on borehole drilling.

Table 1. A summary comparison of the potential benefits of the Kilimanjaro Concept versus the current
borehole-based drinking water supplies.

Kilimanjaro Concept Borehole-based drinking water systems

(1) Safeguards populations against geogenic pollution (1) Exposes populations to geogenic pollution

(2) Harvested rainwater is analyzed, and treated if needed  (2) In cases of geogenic pollution, treatment methods are
(e.g., using low-cost Fe? filters). rarely ineffective, but always expensive

(3) Excessive groundwater abstraction causes borehole

(3) Harvested rainwater also recharges groundwater. failure and groundwater depletion.

(4) In coastal areas, artificial recharge prevents saltwater (4) In coastal areas, intensive groundwater withdrawal
intrusion. promotes saltwater intrusion

(5) Flexible and adaptable to various conditions, including
catchment types (roofs, roads, mountainous areas), and can
be used either as a substitute or supplement for
conventional water sources.

(5) High yield aquifers only occur in certain geological
formations and localities, which may not coincide with
human settlements.

(6) RWH combined with artificial infiltration attenuates
flood risks by reducing Hortonian runoff volumes, peak (6) No capacity to attenuate floods.
flows, and erosion.

(7) Affordable RWH systems can be developed at (7) Installation costs for boreholes are often prohibitive
household level, promoting ownership and control. especially for small communities.

In the discourse on rainwater harvesting systems for drinking water provision, including the KC,
some critics often highlight that the cost of such systems is quite high. In cases where communities have
no access to centralized water systems, and groundwater is contaminated with highly toxic geogenic
contaminants, the issue of perceived ‘high cost’ should be cast in a proper context. In the authors’ view,
the ‘high cost” should only be with respect to other competing options that will provide clean water
without exposing communities to even more serious health risks. Moreover, given that rainwater
harvesting for drinking purposes has a long history [18,19], and can be practiced with locally-made
devices, one even wonders whether the cost for such systems is as high as often perceived. Thus
whether the KC is more expensive than the conventional drinking water supply systems can only be
determined during a detailed design process, which can only be done on a case-by-case basis.

In summary, the novelty of the KC relative to the dominant approach based on drilling boreholes
for drinking water provision includes the following aspects:

(1) It addresses water quality aspects (e.g., toxic geogenic contaminants) and associated human
health risks,

(2) It reduces the risk of saltwater intrusion, and groundwater depletion, and in some cases may
even enhance groundwater recharge,

(3) Can be coupled to household food production, income and nutritional security thus addressing
the water-food nexus especially in Africa,

(4) The use of gravity-driven systems and low-cost water treatment systems may reduce the risk of
frequent failure associated with boreholes, and

(5) Itis flexible and amenable to universal application, suggesting that it can be adapted to various
local conditions.



Sustainability 2019, 11, 5606 10 of 15

3.7. Shaping the Future of the Kilimanjaro Concept

There is still much to be considered to make RWH a first-line agent in the global battle for integrated
water management. The primary objective of this communication was to show the non-inferiority of
RW as a drinking water source with respect to the initial quality and the extent of treatment needed.
Once the non-inferiority of rainwater as drinking water source is ultimately established, the superiority
of local infiltration for groundwater recharge will be considered. The extended Kilimanjaro Concept, on
the other hand, is seeking the long-term management of water resources irrespective of any changing
climatic phenomenon, including disproportionate distribution of rainfall.

The extended Kilimanjaro Concept also addresses rural/urban disparity. Urban areas in the
developing world are increasingly subject to the scarcity of drinking water due to the following:
(i) uncontrolled influx of rural populations, (ii) lack of technical and management capacity, and (iii)
inadequate water distribution system [12]. Since water is managed on a large-scale basis (e.g., regional),
water properly infiltrated in a village is available in the next city depending on the topography and
aquifer connectivity. Additionally, urban households are aware that RWH is not a low-value alternative
for drinking water supply and non-potable uses. Traditionally, urban populations adopt several
strategies to cope with shortages in water supply. These strategies include drilling wells, storing water,
buying bottled water and collecting water from alternative sources [12,78].

The initial uptake and adoption of the KC are likely to be rapid and more widespread under
certain preconditions, which will also determine the sustainability of the rainwater harvesting systems.
These preconditions include:

(1) Local need and commitment to harvest rainwater driven by a critical lack of clean drinking water.
Examples include, (i) high geogenic contaminants in existing drinking water sources, and (ii) lack
of access to decentralized water systems as is the case in most developing countries,

(2) Local positive experience in rainwater harvesting and its benefits, even without the influence of
agents such as local extensionists and NGOs. For example, in Uganda and Sri Lanka households
are reported to use simple devices such as banana leaves or stems as gutters to harvest up to
200 liters of water from large trees in a single rainstorm [79],

(3) Frequent failure of traditional drinking water sources such as boreholes, and piped water supply
systems due to increasing water demands, and variability of water availability,

(4) The potential for rainwater harvesting systems to create co-benefits through multiple uses,
including household food production, domestic uses and income generation,

(5) Climatic conditions characterized high variability of rainfall, surface, and groundwater. In this
regard, dry and wet tropical climates with short dry seasons and multiple high-intensity rainstorms
may provide ideal conditions for water harvesting. In such cases, rainwater harvesting systems
can be used to bridge water shortages during the dry season,

(6) Demonstrated technical, financial and socio-economic feasibility, including local technical capacity,
community involvement and stakeholder participation including women empowerment.

4. Conclusions and Outlook

This current communication extends the Kilimanjaro Concept initially developed to overcome the
human health risks associated with high concentrations of toxic geogenic contaminants in groundwater.
It is further argued that the KC could be a universal solution for clean water provision for communities
lacking access to centralized conventional water treatment systems. Specifically, the following were
highlighted: (i) based on lessons drawn from China, excess rainwater in storage facilities can be
transported even over long distances to communities in need using conveyance systems, (ii) besides
harvesting rainwater solely for drinking water provision, the KC may also include runoff harvesting
for non-potable uses, including food production, and (iii) in cases where the risk of geogenic pollution
is low, stormwater and runoff can be collected and artificially recharged into groundwater system for
subsequent use during the dry season. These features overcome some of the limitations associated with
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conventional rainwater harvesting. This makes the KC adaptable to various conditions, thus provides
a potential solution for decentralized clean water provision. However, the detailed design of the
system and the cost of implementing the KC will need to be estimated on a case-by-case basis. Overall,
the KC concept seeks to promote the use of rainwater where and when it falls, while minimizing
contamination. Moreover, scope exists to couple the KC to food production at household level, thereby
addressing the water-food nexus in developing countries. The concept represents a shift from the
current approach to clean water provision, which has been dominated by drilling and installation
of boreholes, with limited consideration of the water quality aspects. Such an approach has often
failed to overcome the human health risks associated with toxic geogenic contaminants in drinking
water. To demonstrate feasibility of the KC, the next phase of the research should entail pilot-testing
the concept at key selected sites. Such pilot studies should include detailed design and analysis,
and socio-economic and financial evaluation of the concept versus other competing options such as
centralized drinking water systems and groundwater-based water supply systems.
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