Show simple item record

dc.contributor.authorKasambala, Hildegard
dc.contributor.authorMwemezi, Rwiza
dc.contributor.authorMpumi, Nelson
dc.contributor.authorMwema, Mwema Felix
dc.contributor.authorNjau, Karoli
dc.date.accessioned2024-11-20T10:12:04Z
dc.date.available2024-11-20T10:12:04Z
dc.date.issued2024-10-01
dc.identifier.urihttps://doi.org/10.1007/s13399-024-06196-8
dc.identifier.urihttps://dspace.nm-aist.ac.tz/handle/20.500.12479/2809
dc.descriptionThis research article was published by Biomass Conversion and Biorefinery 2024en_US
dc.description.abstractThis study investigated the effectiveness of biochar derived from banana and disrupting endocrine-disrupting compounds (EDCs) from water in isolated systems. The study aimed to provide an eco-friendly solution for water purification using agricultural waste products. Banana and mango peels were dried, ground, and calcinated at 300, 550, and 700 °C temperatures. The biochar was tested through a batch adsorption experiment for the removal of progesterone, and the remaining progesterone was analyzed using high-performance liquid chromatography (HPLC). Results indicated that the banana peel biochar (BPB) and mango peel biochar (MPB) achieved the highest adsorption capacities of 92.8 and 87.9%, respectively, when subjected to pyrolysis at 700 °C. The effect of other factors on adsorbent efficiency and its characteristics were subsequently analyzed by biochar calcinated at 700 °C. Results indicate that as the concentration of adsorbent increases, the adsorption efficiency increases while the adsorption capacity decreases. The Langmuir model fits better in BPB, while the Freundlich model fits better in MPB. The maximum adsorption capacities of the Langmuir model were 43.42 and 37.80 mg of progesterone per g of BPB and MPB, respectively. The scanning electron microscopy image (SEM) showed that biochar from 700 °C presents higher porosities than biochar. The Brunauer–Emmett–Teller (BET) showed that both biochars had high surface area and equal pore volume. Therefore, the study suggests that BPB and MPB are the best eco-friendly agricultural waste materials for development of sustainable water treatment technologies for removal of EDCs from water.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectEndocrine-disrupting compounden_US
dc.subjectIsolated systemsen_US
dc.subjectProgesterone,en_US
dc.subjectBanana peel biocharen_US
dc.subjectMango biocharen_US
dc.subjectAdsorptionen_US
dc.titleBiochars derived from banana and mango peels in isolated systems revealed high removal efficiency of endocrine-disrupting compounds from water.en_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record